期刊文献+
共找到156,889篇文章
< 1 2 250 >
每页显示 20 50 100
Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies
1
作者 Dian Jiao Lai Xu +3 位作者 Zhen Gu Hua Yan Dingding Shen Xiaosong Gu 《Neural Regeneration Research》 SCIE CAS 2025年第4期917-935,共19页
Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The ... Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease. 展开更多
关键词 DIAGNOSIS drug treatment ELECTROENCEPHALOGRAPHY epilepsy monitoring EPILEPSY nerve regeneration NEUROSTIMULATION non-drug interventions pathogenesis prediction
下载PDF
Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders:progress of experimental models based on disease pathogenesis
2
作者 Li Xu Huiming Xu Changyong Tang 《Neural Regeneration Research》 SCIE CAS 2025年第2期354-365,共12页
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem... Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials. 展开更多
关键词 AQUAPORIN-4 experimental model neuromyelitis optica spectrum disorder pathogenesis
下载PDF
Glycolytic dysregulation in Alzheimer's disease:unveiling new avenues for understanding pathogenesis and improving therapy
3
作者 You Wu Lijie Yang +2 位作者 Wanrong Jiang Xinyuan Zhang Zhaohui Yao 《Neural Regeneration Research》 SCIE CAS 2025年第8期2264-2278,共15页
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on choli... Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease glial cells GLYCOLYSIS neuronal metabolism pathogenesis therapeutic targets
下载PDF
New exploration on pathogenesis and early diagnosis of gestational diabetes
4
作者 Hua Bai 《World Journal of Clinical Cases》 SCIE 2025年第1期1-5,共5页
Gestational diabetes mellitus(GDM)refers to varying degrees of abnormal glucose metabolism that occur during pregnancy and excludes patients pre-viously diagnosed with diabetes.GDM is a unique among the four subtypes ... Gestational diabetes mellitus(GDM)refers to varying degrees of abnormal glucose metabolism that occur during pregnancy and excludes patients pre-viously diagnosed with diabetes.GDM is a unique among the four subtypes of diabetes classified by the international World Health Organization standards.Although GDM patients constitute a small proportion of the total number of diabetes cases,the incidence of GDM has risen significantly over the past decade,posing substantial risk to pregnant women and infants.Therefore,it warrants considerable attention.The pathogenesis of GDM is generally considered to resemble that of type II diabetes,though it may have distinct characteristics.Analyzing blood biochemical proteins in the context of GDM can help elucidate its pathogenesis,thereby facilitating more effective prevention and management strategies.This article reviews this critical clinical issue to enhance the medical community's sufficient understanding of GDM. 展开更多
关键词 Gestational diabetes mellitus pathogenesis PROTEOMICS RBP4 ANGPTL8
下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP
5
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation prediction OPTIMIZATION
下载PDF
Short-Term Rolling Prediction of Tropical Cyclone Intensity Based on Multi-Task Learning with Fusion of Deviation-Angle Variance and Satellite Imagery
6
作者 Wei TIAN Ping SONG +5 位作者 Yuanyuan CHEN Yonghong ZHANG Liguang WU Haikun ZHAO Kenny Thiam Choy LIM KAM SIAN Chunyi XIANG 《Advances in Atmospheric Sciences》 2025年第1期111-128,共18页
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr... Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling. 展开更多
关键词 tropical cyclone INTENSITY structure rolling prediction MULTI-TASK
下载PDF
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM
7
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
下载PDF
A Machine Learning-Based Observational Constraint Correction Method for Seasonal Precipitation Prediction
8
作者 Bofei ZHANG Haipeng YU +5 位作者 Zeyong HU Ping YUE Zunye TANG Hongyu LUO Guantian WANG Shanling CHENG 《Advances in Atmospheric Sciences》 2025年第1期36-52,共17页
Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the nume... Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China. 展开更多
关键词 observational constraint LightGBM seasonal prediction summer precipitation machine learning
下载PDF
Risk factors for biometry prediction error by Barrett Universal II intraocular lens formula in Chinese patients
9
作者 Xu-Hao Chen Ying Hong +3 位作者 Xiang-Han Ke Si-Jia Song Yu-Jie Cen Chun Zhang 《International Journal of Ophthalmology(English edition)》 2025年第1期74-78,共5页
AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Uni... AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Universal II(BUII)IOL formula for calculation.METHODS:The prospective study included patients who had undergone cataract surgery performed by a single surgeon from June 2020 to April 2022.The collected data included the best-corrected visual acuity(BCVA),corneal curvature,preoperative and postoperative central anterior chamber depths(ACD),axial length(AXL),IOL power,and refractive error.BUII formula was used to calculate the IOL power.The mean absolute error(MAE)was calculated,and all the participants were divided into two groups accordingly.Independent t-tests were applied to compare the variables between groups.Logistic regression analysis was used to analyze the influence of age,AXL,corneal curvature,and preoperative and postoperative ACD on MAE.RESULTS:A total of 261 patients were enrolled.The 243(93.1%)and 18(6.9%)had postoperative MAE<1 and>1 D,respectively.The number of females was higher in patients with MAE>1 D(χ^(2)=3.833,P=0.039).The postoperative BCVA(logMAR)of patients with MAE>1 D was significantly worse(t=-2.448;P=0.025).After adjusting for gender in the logistic model,the risk of postoperative refractive errors was higher in patients with a shallow postoperative anterior chamber[odds ratio=0.346;95% confidence interval(CI):0.164,0.730,P=0.005].CONCLUSION:Risk factors for biometry prediction error after cataract surgery include the patient’s sex and postoperative ACD.Patients with a shallow postoperative anterior chamber are prone to have refractive errors. 展开更多
关键词 intraocular lens power calculation GENDER anterior chamber depth biometry prediction error
下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions
10
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 Data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
下载PDF
Enhancing rectal cancer liver metastasis prediction:Magnetic resonance imaging-based radiomics,bias mitigation,and regulatory considerations
11
作者 Yuwei Zhang 《World Journal of Gastrointestinal Oncology》 2025年第2期318-321,共4页
In this article,we comment on the article by Long et al published in the recent issue of the World Journal of Gastrointestinal Oncology.Rectal cancer patients are at risk for developing metachronous liver metastasis(M... In this article,we comment on the article by Long et al published in the recent issue of the World Journal of Gastrointestinal Oncology.Rectal cancer patients are at risk for developing metachronous liver metastasis(MLM),yet early prediction remains challenging due to variations in tumor heterogeneity and the limitations of traditional diagnostic methods.Therefore,there is an urgent need for noninvasive techniques to improve patient outcomes.Long et al’s study introduces an innovative magnetic resonance imaging(MRI)-based radiomics model that integrates high-throughput imaging data with clinical variables to predict MLM.The study employed a 7:3 split to generate training and validation datasets.The MLM prediction model was constructed using the training set and subsequently validated on the validation set using area under the curve(AUC)and dollar-cost averaging metrics to assess performance,robustness,and generalizability.By employing advanced algorithms,the model provides a non-invasive solution to assess tumor heterogeneity for better metastasis prediction,enabling early intervention and personalized treatment planning.However,variations in MRI parameters,such as differences in scanning resolutions and protocols across facilities,patient heterogeneity(e.g.,age,comorbidities),and external factors like carcinoembryonic antigen levels introduce biases.Additionally,confounding factors such as diagnostic staging methods and patient comorbidities require further validation and adjustment to ensure accuracy and generalizability.With evolving Food and Drug Administration regulations on machine learning models in healthcare,compliance and careful consideration of these regulatory requirements are essential to ensuring safe and effective implementation of this approach in clinical practice.In the future,clinicians may be able to utilize datadriven,patient-centric artificial intelligence(AI)-enhanced imaging tools integrated with clinical data,which would help improve early detection of MLM and optimize personalized treatment strategies.Combining radiomics,genomics,histological data,and demographic information can significantly enhance the accuracy and precision of predictive models. 展开更多
关键词 Metachronous liver metastasis Radiomics Machine learning Rectal cancer Magnetic resonance imaging variability Bias mitigation Food and Drug Administration regulations predictive modeling
下载PDF
Gut flora in multiple sclerosis:implications for pathogenesis and treatment 被引量:2
12
作者 Weiwei Zhang Ying Wang +2 位作者 Mingqin Zhu Kangding Liu Hong-Liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1480-1488,共9页
Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow d... Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis. 展开更多
关键词 gut flora gut-brain axis multiple sclerosis pathogenesis treatment
下载PDF
Classifying rockburst with confidence:A novel conformal prediction approach 被引量:3
13
作者 Bemah Ibrahim Isaac Ahenkorah 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期51-64,共14页
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses... The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence. 展开更多
关键词 ROCKBURST Machine learning Uncertainty quantification Conformal prediction
下载PDF
NLRP3 inflammasome plays a vital role in the pathogenesis of age-related diseases in the eye and brain 被引量:1
14
作者 Jack Jonathan Maran Odunayo Omolola Mugisho 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1425-1426,共2页
Key points:With aging,there is increased nucleotide-binding oligomerization domain-(NOD-)like receptor(NLR) protein-3(NLRP3) activation in neural and ocular tissues.Activation of the NLRP3 inflammasome appears to be a... Key points:With aging,there is increased nucleotide-binding oligomerization domain-(NOD-)like receptor(NLR) protein-3(NLRP3) activation in neural and ocular tissues.Activation of the NLRP3 inflammasome appears to be a common denominator in the pathogenesis of age-related diseases of the eye and brain.Pharmacological inhibition of the NLRP3 inflammasome may be a potent therapy for preventing the development and progression of age-related eye and brain diseases. 展开更多
关键词 NLRP3 pathogenesis inflam
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
15
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Exploring the autophagy-related pathogenesis of active ulcerative colitis 被引量:1
16
作者 Zhuo-Zhi Gong Teng Li +5 位作者 He Yan Min-Hao Xu Yue Lian Yi-Xuan Yang Wei Wei Tao Liu 《World Journal of Clinical Cases》 SCIE 2024年第9期1622-1633,共12页
BACKGROUND The pathogenesis of ulcerative colitis(UC)is complex,and recent therapeutic advances remain unable to fully alleviate the condition.AIM To inform the development of novel UC treatments,bioinformatics was us... BACKGROUND The pathogenesis of ulcerative colitis(UC)is complex,and recent therapeutic advances remain unable to fully alleviate the condition.AIM To inform the development of novel UC treatments,bioinformatics was used to explore the autophagy-related pathogenesis associated with the active phase of UC.METHODS The GEO database was searched for UC-related datasets that included healthy controls who met the screening criteria.Differential analysis was conducted to obtain differentially expressed genes(DEGs).Au-tophagy-related targets were collected and intersected with the DEGs to identiy differentially expressed autophagy-related genes(DEARGs)associated with active UC.DEARGs were then subjected to KEGG,GO,and DisGeNET disease enrichment analyses using R software.Differential analysis of immune infiltrating cells was performed using the CiberSort algorithm.The least absolute shrinkage and selection operator algorithm and protein-protein interaction network were used to narrow down the DEARGs,and the top five targets in the Dgree ranking were designated as core targets.RESULTS A total of 4822 DEGs were obtained,of which 58 were classified as DEARGs.SERPINA1,BAG3,HSPA5,CASP1,and CX3CL1 were identified as core targets.GO enrichment analysis revealed that DEARGs were primarily enriched in processes related to autophagy regulation and macroautophagy.KEGG enrichment analysis showed that DEARGs were predominantly associated with NOD-like receptor signaling and other signaling pathways.Disease enrichment analysis indicated that DEARGs were significantly linked to diseases such as malignant glioma and middle cerebral artery occlusion.Immune infiltration analysis demonstrated a higher presence of immune cells like activated memory CD4 T cells and follicular helper T cells in active UC patients than in healthy controls.CONCLUSION Autophagy is closely related to the active phase of UC and the potential targets obtained from the analysis in this study may provide new insight into the treatment of active UC patients. 展开更多
关键词 Ulcerative colitis AUTOPHAGY BIOINFORMATIC TARGETS pathogenesis
下载PDF
A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific 被引量:1
17
作者 Yitian ZHOU Ruifen ZHAN +4 位作者 Yuqing WANG Peiyan CHEN Zhemin TAN Zhipeng XIE Xiuwen NIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1391-1402,共12页
Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a ti... Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts. 展开更多
关键词 tropical cyclones western North Pacific intensity prediction EBDS LSTM
下载PDF
Prediction of treatment response to antipsychotic drugs for precision medicine approach to schizophrenia:randomized trials and multiomics analysis 被引量:1
18
作者 Liang-Kun Guo Yi Su +24 位作者 Yu-Ya-Nan Zhang Hao Yu Zhe Lu Wen-Qiang Li Yong-Feng Yang Xiao Xiao Hao Yan Tian-Lan Lu Jun Li Yun-Dan Liao Zhe-Wei Kang Li-Fang Wang Yue Li Ming Li Bing Liu Hai-Liang Huang Lu-Xian Lv Yin Yao Yun-Long Tan Gerome Breen Ian Everall Hong-Xing Wang Zhuo Huang Dai Zhang Wei-Hua Yue 《Military Medical Research》 SCIE CAS CSCD 2024年第1期19-33,共15页
Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack ... Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013). 展开更多
关键词 SCHIZOPHRENIA Antipsychotic drug Treatment response prediction model GENETICS EPIGENETICS
下载PDF
ST-LSTM-SA:A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning 被引量:1
19
作者 Hanxiao YUAN Yang LIU +3 位作者 Qiuhua TANG Jie LI Guanxu CHEN Wuxu CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1364-1378,共15页
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia... The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables. 展开更多
关键词 sound velocity field spatiotemporal prediction deep learning self-allention
下载PDF
Product quality prediction based on RBF optimized by firefly algorithm 被引量:2
20
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部