Bacterial blight of rice caused by Xanthomonas oryzae pv.oryzae(Xoo) is one of high nitrogen(N) responsive diseases.Rice plants became more disease resistant with decreasing N suggesting that the crosstalk between...Bacterial blight of rice caused by Xanthomonas oryzae pv.oryzae(Xoo) is one of high nitrogen(N) responsive diseases.Rice plants became more disease resistant with decreasing N suggesting that the crosstalk between disease resistance and N utilization pathways might exist.However,the co-regulatory components in such crosstalk have not been elucidated.Here,we comparatively analyzed the gene expression profiling of rice under Xoo inoculation,low N treatment,or a combination of both stresses,and identified the differentially-expressed genes(DEGs) in overlapping responses.These DEGs were involved in different biological processes,including innate immunity and nitrogen metabolism.The randomly-selected DEGs expression was validated by quantitative real-time PCR assays.Temporal expression of six genes from different functional categories suggested that N condition was the dominant factor when both stresses were present.These DEGs identified provide novel insights into the coordinated regulatory mechanism in biotic and abiotic stress responses in rice.展开更多
Microbial pathogens,including bacteria,fungi and viruses,greatly threaten the global public health.For pathogen infections,early diagnosis and precise treatment are essential to cut the mortality rate.The emergence of...Microbial pathogens,including bacteria,fungi and viruses,greatly threaten the global public health.For pathogen infections,early diagnosis and precise treatment are essential to cut the mortality rate.The emergence of aggregation‐induced emission(AIE)biomaterials provides an effective and promising tool for the theranostics of pathogen infections.In this review,the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized.With the excellent sensitivity and photostability,AIE biomaterials have been widely applied for precise diagnosis of pathogens.Besides,different types of anti-pathogen methods based on AIE biomaterials will be presented in detail,including chemotherapy and phototherapy.Finally,the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.展开更多
基金supported by the grants from the National Basic Research Program of China(2011CB100701)
文摘Bacterial blight of rice caused by Xanthomonas oryzae pv.oryzae(Xoo) is one of high nitrogen(N) responsive diseases.Rice plants became more disease resistant with decreasing N suggesting that the crosstalk between disease resistance and N utilization pathways might exist.However,the co-regulatory components in such crosstalk have not been elucidated.Here,we comparatively analyzed the gene expression profiling of rice under Xoo inoculation,low N treatment,or a combination of both stresses,and identified the differentially-expressed genes(DEGs) in overlapping responses.These DEGs were involved in different biological processes,including innate immunity and nitrogen metabolism.The randomly-selected DEGs expression was validated by quantitative real-time PCR assays.Temporal expression of six genes from different functional categories suggested that N condition was the dominant factor when both stresses were present.These DEGs identified provide novel insights into the coordinated regulatory mechanism in biotic and abiotic stress responses in rice.
基金supported by NSFC(52003228,52273197 and 21788102)Shenzhen Key Laboratory of Functional Aggregate Materials(ZDSYS20211021111400001)the Science Technology Innovation Commission of Shenzhen Municipality(JCYJ2021324134613038,KQTD20210811090142053,JSGG20220606141800001 and GJHZ20210705141810031).
文摘Microbial pathogens,including bacteria,fungi and viruses,greatly threaten the global public health.For pathogen infections,early diagnosis and precise treatment are essential to cut the mortality rate.The emergence of aggregation‐induced emission(AIE)biomaterials provides an effective and promising tool for the theranostics of pathogen infections.In this review,the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized.With the excellent sensitivity and photostability,AIE biomaterials have been widely applied for precise diagnosis of pathogens.Besides,different types of anti-pathogen methods based on AIE biomaterials will be presented in detail,including chemotherapy and phototherapy.Finally,the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.