With the continuous development of bridge and tunnel construction technologies,large-scale sea-crossing bridges and tunnels have gradually become the preferred choice for regional traffic.The construction technology o...With the continuous development of bridge and tunnel construction technologies,large-scale sea-crossing bridges and tunnels have gradually become the preferred choice for regional traffic.The construction technology of Hong Kong-Zhuhai-Macao Bridge(HZMB),one of the most representative sea-crossing passageways,is instructive for the construction of other large sea-crossing infrastructures.At present,the pavement design method of sea-crossing passageways lacks pertinence as it still refers to specifications for design of common pavement.Therefore,it is necessary to consider the bridge and tunnel pavement of HZMB as a typical example to analyze key technical problems encountered in its design,construction and operation.Novel solutions for material selection and structural design built upon the analysis of such critical problems should thus follow up.Based on comprehensive literature research,it can be found that environmental variability,tunnel closure,structural differential settlement and expansion deformation are the key technical problems faced by pavement of sea-crossing passageways.In view of the environmental variability,the steel deck-paving material and structure design of GMA-10 t SMA-13 is innovatively proposed.As for the closure of immersed tube tunnel,warm-mix flame retardant asphalt mixture is used to control pavement design through key indexes such as temperature and limit oxygen index.Regarding the deformation of immersed pipe joints,BJ200 asphalt seamless expansion joint material is introduced,which effectively satisfies the multi-directional deformation between pipe joints and ensures the smoothness of the road surface and driving comfort.For segmental joints,double-layer waterproof-coiled material is used to effectively prevent reflective cracks while ensuring the continuity of asphalt concrete pavement.Therefore,this paper provides a panel of ideas and methods for the pavement design of the same type of sea-crossing passageways.展开更多
Now the surface settlement induced by shallow buried tunnel to under-traverse highway,mostly adopt the empirical value,3 cm,acquired from Beijing or Shenzhen metro,which is regarded as the controlling standard.But to ...Now the surface settlement induced by shallow buried tunnel to under-traverse highway,mostly adopt the empirical value,3 cm,acquired from Beijing or Shenzhen metro,which is regarded as the controlling standard.But to more project,tunnel under-traverse highway,we must decide the controlling standard flexibly,which should base on the pavement service function and the pavement condition.The thesis,based on the pavement evenness and running comfort ability in the view of completing the pavement service function,supposes the longitudinal pavement settlement cross section as a quadratic parabola,and gets the maximal settlement value in the range of longitudinal pavement influence when the tunnel is under-traverse highway perpendicularly.Then the controlling standard is decided.As Wenxiang Tunnel under-traverse Lianhuo Freeway on Zhengzhou-Xi'an Passenger Dedicated Railway Line for an example,the settlement controlling standard is acquired,and we hope it has an direction and reference value to similar tunnel construction.展开更多
A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal con...A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal contact stress induced by the acceleration/deceleration of vehicles.The key design parameters are the maximum horizontal tensile stresses at the surface of the asphalt layer,the maximum horizontal tensile stresses at the bottom of the asphalt layer and the maximum vertical shear stresses at the surface of the as- phalt layer were calculated.The influencing factors such as double-wheel weight;asphalt layer thickness;base course stiffness modulus and thickness;and the contact conditions among the structure layers on these key design parameters were also examined separately to propose construction procedures of highway tunnel asphalt pavement.展开更多
基金This paper was financially supported by the National Natural Science Foundation of China(52038001,52122809).
文摘With the continuous development of bridge and tunnel construction technologies,large-scale sea-crossing bridges and tunnels have gradually become the preferred choice for regional traffic.The construction technology of Hong Kong-Zhuhai-Macao Bridge(HZMB),one of the most representative sea-crossing passageways,is instructive for the construction of other large sea-crossing infrastructures.At present,the pavement design method of sea-crossing passageways lacks pertinence as it still refers to specifications for design of common pavement.Therefore,it is necessary to consider the bridge and tunnel pavement of HZMB as a typical example to analyze key technical problems encountered in its design,construction and operation.Novel solutions for material selection and structural design built upon the analysis of such critical problems should thus follow up.Based on comprehensive literature research,it can be found that environmental variability,tunnel closure,structural differential settlement and expansion deformation are the key technical problems faced by pavement of sea-crossing passageways.In view of the environmental variability,the steel deck-paving material and structure design of GMA-10 t SMA-13 is innovatively proposed.As for the closure of immersed tube tunnel,warm-mix flame retardant asphalt mixture is used to control pavement design through key indexes such as temperature and limit oxygen index.Regarding the deformation of immersed pipe joints,BJ200 asphalt seamless expansion joint material is introduced,which effectively satisfies the multi-directional deformation between pipe joints and ensures the smoothness of the road surface and driving comfort.For segmental joints,double-layer waterproof-coiled material is used to effectively prevent reflective cracks while ensuring the continuity of asphalt concrete pavement.Therefore,this paper provides a panel of ideas and methods for the pavement design of the same type of sea-crossing passageways.
文摘Now the surface settlement induced by shallow buried tunnel to under-traverse highway,mostly adopt the empirical value,3 cm,acquired from Beijing or Shenzhen metro,which is regarded as the controlling standard.But to more project,tunnel under-traverse highway,we must decide the controlling standard flexibly,which should base on the pavement service function and the pavement condition.The thesis,based on the pavement evenness and running comfort ability in the view of completing the pavement service function,supposes the longitudinal pavement settlement cross section as a quadratic parabola,and gets the maximal settlement value in the range of longitudinal pavement influence when the tunnel is under-traverse highway perpendicularly.Then the controlling standard is decided.As Wenxiang Tunnel under-traverse Lianhuo Freeway on Zhengzhou-Xi'an Passenger Dedicated Railway Line for an example,the settlement controlling standard is acquired,and we hope it has an direction and reference value to similar tunnel construction.
文摘A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal contact stress induced by the acceleration/deceleration of vehicles.The key design parameters are the maximum horizontal tensile stresses at the surface of the asphalt layer,the maximum horizontal tensile stresses at the bottom of the asphalt layer and the maximum vertical shear stresses at the surface of the as- phalt layer were calculated.The influencing factors such as double-wheel weight;asphalt layer thickness;base course stiffness modulus and thickness;and the contact conditions among the structure layers on these key design parameters were also examined separately to propose construction procedures of highway tunnel asphalt pavement.