The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,or...The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,organization,and functionalities.After the review of meanings of awareness and existing approaches for its expression and support,the paper shows application of the Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)for very practical awareness solutions in large distributed dynamic systems,with obtaining any knowledge from any point inside or outside the system.The self-evolving,self-replicating,and self-recovering scenario code in SGL can effectively supervise distributed systems under any circumstances including rapidly changing number of their elements.Examples are provided in SGL for distributed networked systems showing how in any node any information about other nodes and links,including the whole system,can be obtained by using network requesting patterns based on recursive scenarios combining forward and backward network matching and coverage.The returned results may be automatically organized in networked patterns too.The presented exemplary solutions are parallel and fully distributed,without the need of using vulnerable centralized resources,also very compact.This can be explained by fundamentally different philosophy and ideology of SGT which is not based on traditional partitioned systems representation and multiple agent communications.On the contrary,SGT and its basic language supervise and control distributed systems by holistic self-spreading recursive code in wavelike,virus-like,and even“soul-like”mode.展开更多
Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convol...Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.展开更多
Equational programming language (EP) is a novl intelligence language. This paper describes our EP system based on equational logic. Its execution mechanism is pattern matching. The paper focuses the discussion on the ...Equational programming language (EP) is a novl intelligence language. This paper describes our EP system based on equational logic. Its execution mechanism is pattern matching. The paper focuses the discussion on the improvment to bottom-up tree pattern matching. The new bottom-up method shows high execution efficiency.展开更多
文摘The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,organization,and functionalities.After the review of meanings of awareness and existing approaches for its expression and support,the paper shows application of the Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)for very practical awareness solutions in large distributed dynamic systems,with obtaining any knowledge from any point inside or outside the system.The self-evolving,self-replicating,and self-recovering scenario code in SGL can effectively supervise distributed systems under any circumstances including rapidly changing number of their elements.Examples are provided in SGL for distributed networked systems showing how in any node any information about other nodes and links,including the whole system,can be obtained by using network requesting patterns based on recursive scenarios combining forward and backward network matching and coverage.The returned results may be automatically organized in networked patterns too.The presented exemplary solutions are parallel and fully distributed,without the need of using vulnerable centralized resources,also very compact.This can be explained by fundamentally different philosophy and ideology of SGT which is not based on traditional partitioned systems representation and multiple agent communications.On the contrary,SGT and its basic language supervise and control distributed systems by holistic self-spreading recursive code in wavelike,virus-like,and even“soul-like”mode.
文摘Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.
文摘Equational programming language (EP) is a novl intelligence language. This paper describes our EP system based on equational logic. Its execution mechanism is pattern matching. The paper focuses the discussion on the improvment to bottom-up tree pattern matching. The new bottom-up method shows high execution efficiency.