Heteroepitaxial growth of 3C-SiC on patterned Si substrates by low pressure chemical vapor deposition (LPCVD) has been investigated to improve the crystal quality of 3C-SiC films. Si substrates were patterned with p...Heteroepitaxial growth of 3C-SiC on patterned Si substrates by low pressure chemical vapor deposition (LPCVD) has been investigated to improve the crystal quality of 3C-SiC films. Si substrates were patterned with parallel lines,1 to 10μm wide and spaced 1 to 10μm apart,which was carried out by photolithography and reactive ion etching. Growth behavior on the patterned substrates was systematically studied by scanning electron microscopy (SEM). An airgap structure and a spherical shape were formed on the patterned Si substrates with different dimensions. The air gap formed after coalescence reduced the stress in the 3C-SiC films, solving the wafer warp and making it possible to grow thicker films. XRD patterns indicated that the films grown on the maskless patterned Si substrates were mainly composed of crystal planes with (111) orientation.展开更多
We demonstrate InGaN violet light-emitting superluminescent diodes with large spectral width suitable for applications in optical coherence spectroscopy.This was achieved using the concept of nonlinear indium content ...We demonstrate InGaN violet light-emitting superluminescent diodes with large spectral width suitable for applications in optical coherence spectroscopy.This was achieved using the concept of nonlinear indium content profile along the superluminescent diode waveguide.A specially designed 3D substrate surface shape leads to a step-like indium content profile,with the indium concentration in the InGaN/GaN quantum wells ranging approximately between 6% and 10%.Thanks to this approach,we were able to increase the width of the spectrum in processed devices from 2.6 nm(reference diode)to 15.5 nm.展开更多
The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (0) are investigated in detail. The threading dis...The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (0) are investigated in detail. The threading dislocation (TD) density is lower in the film grown on the PSS with a smaller fill factor, resulting in a higher internal quantum efficiency (IQE). Also the ability of the LED to withstand the electrostatic discharge (ESD) increases as the fill factor decreases. The illumination output power of the LED is affected by both 0 and f. It is found that the illumination output power of the LED grown on the PSS with a lower production of tan 0 and f is higher than that with a higher production of tan 0 and f.展开更多
A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complic...A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs' light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years.展开更多
The effect of patterned sapphire substrate(PSS) on the top-surface(P-Ga N-surface) and the bottomsurface(sapphire-surface) of the light output power(LOP) of Ga N-based LEDs was investigated, in order to study ...The effect of patterned sapphire substrate(PSS) on the top-surface(P-Ga N-surface) and the bottomsurface(sapphire-surface) of the light output power(LOP) of Ga N-based LEDs was investigated, in order to study the changes in reflection and transmission of the Ga N-sapphire interface. Experimental research and computer simulations were combined to reveal a great enhancement in LOP from either the top or bottom surface of Ga N-based LEDs, which are prepared on patterned sapphire substrates(PSS-LEDs). Furthermore, the results were compared to those of the conventional LEDs prepared on the planar sapphire substrates(CSS-LEDs). A detailed theoretical analysis was also presented to further support the explanation for the increase in both the effective reflection and transmission of PSS-Ga N interface layers and to explain the causes of increased LOP values. Moreover, the bottom-surface of the PSS-LED chip shows slightly increased light output performance when compared to that of the top-surface. Therefore, the light extraction efficiency(LEE) can be further enhanced by integrating the method of PSS and flip-chip structure design.展开更多
In this paper, the cone-shaped patterned sapphire substrates (PSS) were etched by an inductively couple plasma with BCl 3 as the reacting gas. The influence of the operating pressure and the RF bias power on subtrench...In this paper, the cone-shaped patterned sapphire substrates (PSS) were etched by an inductively couple plasma with BCl 3 as the reacting gas. The influence of the operating pressure and the RF bias power on subtrenches of the cone-shaped PSS and the formation mechanism of subtrenches were investigated. The profiles of patterns were characterized by FESEM (field emission scanning electron microscope). It showed that the subtrench size varied with the operating pressure and the RF bias power. As the operating pressure increased from 0.2 Pa to 0.9 Pa, the subtrenches changed from narrow and deep to wide and shallow; then to narrower and shallower. When the RF bias power varied from 200 W to 600 W, the subtrenches gradually became noticeable. The FESEM results also indicated that the subtrenches were formed due to the ion scattering effect which was caused by tapered sidewalls and charges accumulation. It is discovered that the scattering effect is closely related with the operating pressure and RF bias power.展开更多
Cone-shaped patterned sapphire substrate was prepared by inductively coupled plasma etching and GaN nucleation layer was grown on it by metal-organic chemical vapor deposition.A selective growth of GaN nucleation laye...Cone-shaped patterned sapphire substrate was prepared by inductively coupled plasma etching and GaN nucleation layer was grown on it by metal-organic chemical vapor deposition.A selective growth of GaN nucleation layer was found on the slope of the cone-shaped patterned sapphire substrat,and the distribution morphology of GaN had significantly changed after it was recrystallized.GaN selective growth and redistribution were analyzed by investigating the distribution of crystallographic planes on the cone surface and the atom array of specific planes at atom level.展开更多
The growth process of three-dimensional growth mode(3D) switching to two-dimensional growth mode (2D) is investigated when GaN films are grown on cone-shaped patterned sapphire substrates by metal-organic chemical...The growth process of three-dimensional growth mode(3D) switching to two-dimensional growth mode (2D) is investigated when GaN films are grown on cone-shaped patterned sapphire substrates by metal-organic chemical vapor deposition.The growth condition of the 3D-2D growth process is optimized to reduce the threading dislocation density(TDD).It is found that the condition of the 3D layer is critical.The 3D layer keeps growing under the conditions of lowⅤ/Ⅲratio,low temperature,and high pressure until its thickness is comparable to the height of the cone-shaped patterns.Then the 3D layer surrounds the cone-shaped patterns and has inclined side facets and a top(0001) plane.In the following 2D-growth process,inclined side facets coalesce quickly and the interaction of TDs with the side facets causes the TDs to bend over.As a result,the TDD of GaN films can decrease to 1×10~8 cm^(-2),giving full-width at half maximum values of 211 and 219 arcsec for(002) and(102) omega scans, respectively.展开更多
GaN films are grown on cone-shaped patterned sapphire substrates (CPSSs) by metal-organic chemical vapor deposition, and the influence of the temperature during the middle stage of GaN growth on the threading disloc...GaN films are grown on cone-shaped patterned sapphire substrates (CPSSs) by metal-organic chemical vapor deposition, and the influence of the temperature during the middle stage of GaN growth on the threading dislocation (TD) density of GaN is investigated. High-resolution X-ray diffraction (XRD) and cathodeluminescence (CL) were used to characterize the GaN films. The XRD results showed that the edge-type dislocation density of GaN grown on CPSS is remarkably reduced compared to that of GaN grown on conventional sapphire substrates (CSSs). Furthermore, when the growth temperature in the middle stage of GaN grown on CPSS decreases, the full width at half maximum of the asymmetry (102) plane of GaN is reduced. This reduction is attributed to the enhancement of vertical growth in the middle stage with a more triangular-like shape and the bending of TDs. The CL intensity spatial mapping results also showed the superior optical properties of GaN grown on CPSS to those of GaN on CSS, and that the density of dark spots of GaN grown on CPSS induced by nonradiative recombination is reduced when the growth temperature in the middle stage decreases.展开更多
Since the first demonstrations of radio-frequency(RF)circuits,the physics of the electromagnetic(EM)field and its regulation and control with codesigned circuits,have become essential competencies of RF circuit design...Since the first demonstrations of radio-frequency(RF)circuits,the physics of the electromagnetic(EM)field and its regulation and control with codesigned circuits,have become essential competencies of RF circuit designers.Leveraging advanced regulation or control methods,numerous high-performance circuits have been developed at RF and millimeter-wave(mm-wave)frequencies.Three main methods of electromagnetic regulation have been widely utilized,namely,the separation of electric and magnetic coupling paths,the manipulation of electromagnetic energy through the coupling of multiple tanks or multiple resonators,and the regulation of electromagnetic fields in air cavities or meta-substrates.The separated coupling paths of electric and magnetic fields provide guidance for designing a high-performance filter topology with a quasielliptical response through additional zeros.The manipulation of the EM field through electrical and magnetic intercouplings of multitanks or multiresonators,such as are used in oscillators,power amplifiers(PAs),etc.,results in remarkable power efficiency,size reduction,and wide bandwidth.The regulation of electromagnetism through an air cavity,patterned substrate,or metasubstrate reduces dielectric losses and size,especially when using a substrate integrated suspended line(SISL)platform.Many excellent circuits have been reported based on SISL with low loss,high integration,and self-packaging.Here,we present state-of-the-art cases that demonstrate the benefits of EM field regulation and control.展开更多
We present an overview on the recent progress achieved on the controllable growth of diverse GeSi al- loy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on pat...We present an overview on the recent progress achieved on the controllable growth of diverse GeSi al- loy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are dis- cussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demon- stration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we sum- marize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures.展开更多
ZnO-based n/p homojunctions were fabricated by sputtering from a single zinc nitride target at room temperature on metal or ITO-coated glass and Si substrates.A multi-target rf-sputtering system was used for the growt...ZnO-based n/p homojunctions were fabricated by sputtering from a single zinc nitride target at room temperature on metal or ITO-coated glass and Si substrates.A multi-target rf-sputtering system was used for the growth of all oxide films as multilayers in a single growth run without breaking the vacuum in the growth chamber.The nitrogen-containing films(less than 1.5 at.% of nitrogen)were n-type ZnO when deposited in oxygen-deficient Ar plasma(10%O_(2))and p-type ZnO when deposited in oxygen-rich Ar plasma(50%O_(2)).The all-oxide homojunction ITO/n-ZnO/p-ZnO/ITO/glass was fabricated in a single deposition run and exhibited visible transparency in the range of 75-85%.The n/p ZnO homojunctions,having metallic contacts,formed on conventionally processed substrates showed a fairly unstable behavior concerning the current-voltage characteristics.However,the same homojunctions formed on Si_(3)N_(4)-patterned substrates and stored in atmosphere for a period of five months were stable exhibiting a turn-on voltage of around 1.5 V.The realization of a room temperature sputtered transparent and stable ZnO homojunction paves the way to the realization of all-oxide transparent optoelectronic devices.展开更多
文摘Heteroepitaxial growth of 3C-SiC on patterned Si substrates by low pressure chemical vapor deposition (LPCVD) has been investigated to improve the crystal quality of 3C-SiC films. Si substrates were patterned with parallel lines,1 to 10μm wide and spaced 1 to 10μm apart,which was carried out by photolithography and reactive ion etching. Growth behavior on the patterned substrates was systematically studied by scanning electron microscopy (SEM). An airgap structure and a spherical shape were formed on the patterned Si substrates with different dimensions. The air gap formed after coalescence reduced the stress in the 3C-SiC films, solving the wafer warp and making it possible to grow thicker films. XRD patterns indicated that the films grown on the maskless patterned Si substrates were mainly composed of crystal planes with (111) orientation.
基金Narodowe Centrum Nauki(NCN)(2014/15/B/ST3/04252)Narodowe Centrum Badan'i Rozwoju(NCBR)(1/POLBER-1/2014)
文摘We demonstrate InGaN violet light-emitting superluminescent diodes with large spectral width suitable for applications in optical coherence spectroscopy.This was achieved using the concept of nonlinear indium content profile along the superluminescent diode waveguide.A specially designed 3D substrate surface shape leads to a step-like indium content profile,with the indium concentration in the InGaN/GaN quantum wells ranging approximately between 6% and 10%.Thanks to this approach,we were able to increase the width of the spectrum in processed devices from 2.6 nm(reference diode)to 15.5 nm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61006084 and 61076119)the Technical Corporation Innovation Foundation of Suzhou Industrial Park,China (Grant No. SG0962)
文摘The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (0) are investigated in detail. The threading dislocation (TD) density is lower in the film grown on the PSS with a smaller fill factor, resulting in a higher internal quantum efficiency (IQE). Also the ability of the LED to withstand the electrostatic discharge (ESD) increases as the fill factor decreases. The illumination output power of the LED is affected by both 0 and f. It is found that the illumination output power of the LED grown on the PSS with a lower production of tan 0 and f is higher than that with a higher production of tan 0 and f.
基金Project supported by the National Natural Science Fundation for Excellent Young Scholars of China(Grant No.51422203)the National Natural Science Foundation of China(Grant No.51372001)+1 种基金the Outstanding Youth Foundation of Guangdong Scientific Committee(Grant No.S2013050013882)the Strategic Special Funds for LEDs of Guangdong Province,China(Grant Nos.2011A081301010,2011A081301012,2012A080302002,and 2012A080302004)
文摘A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs' light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years.
基金Project supported by the National High Technology Program of China (No.Y48A040000)
文摘The effect of patterned sapphire substrate(PSS) on the top-surface(P-Ga N-surface) and the bottomsurface(sapphire-surface) of the light output power(LOP) of Ga N-based LEDs was investigated, in order to study the changes in reflection and transmission of the Ga N-sapphire interface. Experimental research and computer simulations were combined to reveal a great enhancement in LOP from either the top or bottom surface of Ga N-based LEDs, which are prepared on patterned sapphire substrates(PSS-LEDs). Furthermore, the results were compared to those of the conventional LEDs prepared on the planar sapphire substrates(CSS-LEDs). A detailed theoretical analysis was also presented to further support the explanation for the increase in both the effective reflection and transmission of PSS-Ga N interface layers and to explain the causes of increased LOP values. Moreover, the bottom-surface of the PSS-LED chip shows slightly increased light output performance when compared to that of the top-surface. Therefore, the light extraction efficiency(LEE) can be further enhanced by integrating the method of PSS and flip-chip structure design.
基金supported by the National Key Project of China (No. 2009ZX02037-005)
文摘In this paper, the cone-shaped patterned sapphire substrates (PSS) were etched by an inductively couple plasma with BCl 3 as the reacting gas. The influence of the operating pressure and the RF bias power on subtrenches of the cone-shaped PSS and the formation mechanism of subtrenches were investigated. The profiles of patterns were characterized by FESEM (field emission scanning electron microscope). It showed that the subtrench size varied with the operating pressure and the RF bias power. As the operating pressure increased from 0.2 Pa to 0.9 Pa, the subtrenches changed from narrow and deep to wide and shallow; then to narrower and shallower. When the RF bias power varied from 200 W to 600 W, the subtrenches gradually became noticeable. The FESEM results also indicated that the subtrenches were formed due to the ion scattering effect which was caused by tapered sidewalls and charges accumulation. It is discovered that the scattering effect is closely related with the operating pressure and RF bias power.
基金Supported by the National Natural Science Foundation of China(Nos.61223005, 61376046), the Program for New Century Excellent Talents in University of China(Nos.NCET-12-0236, NCET-13-0254), the Science and Technology Developing Project of Jilin Province, China (No.20130204032GX) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory in the Fifth Electronics Research Institute of Ministry of Industry and Information Technology of China(No.ZHD201204).
文摘Cone-shaped patterned sapphire substrate was prepared by inductively coupled plasma etching and GaN nucleation layer was grown on it by metal-organic chemical vapor deposition.A selective growth of GaN nucleation layer was found on the slope of the cone-shaped patterned sapphire substrat,and the distribution morphology of GaN had significantly changed after it was recrystallized.GaN selective growth and redistribution were analyzed by investigating the distribution of crystallographic planes on the cone surface and the atom array of specific planes at atom level.
文摘The growth process of three-dimensional growth mode(3D) switching to two-dimensional growth mode (2D) is investigated when GaN films are grown on cone-shaped patterned sapphire substrates by metal-organic chemical vapor deposition.The growth condition of the 3D-2D growth process is optimized to reduce the threading dislocation density(TDD).It is found that the condition of the 3D layer is critical.The 3D layer keeps growing under the conditions of lowⅤ/Ⅲratio,low temperature,and high pressure until its thickness is comparable to the height of the cone-shaped patterns.Then the 3D layer surrounds the cone-shaped patterns and has inclined side facets and a top(0001) plane.In the following 2D-growth process,inclined side facets coalesce quickly and the interaction of TDs with the side facets causes the TDs to bend over.As a result,the TDD of GaN films can decrease to 1×10~8 cm^(-2),giving full-width at half maximum values of 211 and 219 arcsec for(002) and(102) omega scans, respectively.
基金supported by the National Natural Science Foundation of China(Nos.61076052,60906006)the State Key Development Program for Basic Research of China(No.2012CB619303)the National High Technology Research and Development Program of China(No.2011AA050514)
文摘GaN films are grown on cone-shaped patterned sapphire substrates (CPSSs) by metal-organic chemical vapor deposition, and the influence of the temperature during the middle stage of GaN growth on the threading dislocation (TD) density of GaN is investigated. High-resolution X-ray diffraction (XRD) and cathodeluminescence (CL) were used to characterize the GaN films. The XRD results showed that the edge-type dislocation density of GaN grown on CPSS is remarkably reduced compared to that of GaN grown on conventional sapphire substrates (CSSs). Furthermore, when the growth temperature in the middle stage of GaN grown on CPSS decreases, the full width at half maximum of the asymmetry (102) plane of GaN is reduced. This reduction is attributed to the enhancement of vertical growth in the middle stage with a more triangular-like shape and the bending of TDs. The CL intensity spatial mapping results also showed the superior optical properties of GaN grown on CPSS to those of GaN on CSS, and that the density of dark spots of GaN grown on CPSS induced by nonradiative recombination is reduced when the growth temperature in the middle stage decreases.
文摘Since the first demonstrations of radio-frequency(RF)circuits,the physics of the electromagnetic(EM)field and its regulation and control with codesigned circuits,have become essential competencies of RF circuit designers.Leveraging advanced regulation or control methods,numerous high-performance circuits have been developed at RF and millimeter-wave(mm-wave)frequencies.Three main methods of electromagnetic regulation have been widely utilized,namely,the separation of electric and magnetic coupling paths,the manipulation of electromagnetic energy through the coupling of multiple tanks or multiple resonators,and the regulation of electromagnetic fields in air cavities or meta-substrates.The separated coupling paths of electric and magnetic fields provide guidance for designing a high-performance filter topology with a quasielliptical response through additional zeros.The manipulation of the EM field through electrical and magnetic intercouplings of multitanks or multiresonators,such as are used in oscillators,power amplifiers(PAs),etc.,results in remarkable power efficiency,size reduction,and wide bandwidth.The regulation of electromagnetism through an air cavity,patterned substrate,or metasubstrate reduces dielectric losses and size,especially when using a substrate integrated suspended line(SISL)platform.Many excellent circuits have been reported based on SISL with low loss,high integration,and self-packaging.Here,we present state-of-the-art cases that demonstrate the benefits of EM field regulation and control.
基金Project supports by the Natural Science Foundation of China(Nos.61605232,61674039)the Open Research Project of State Key Laboratory of Surface Physics from Fudan University(Nos.KF2016_15s,KF2017_05)
文摘We present an overview on the recent progress achieved on the controllable growth of diverse GeSi al- loy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are dis- cussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demon- stration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we sum- marize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures.
基金partially supported by the EU Horizon 2020‘ASCENT’project,grant agreement No 654384(project 046)the“Materials and Processes for Energy and Environment Applications-AENAO”(MIS 5002556)project co-financed by Greece and EU(European Regional Development Fund)+1 种基金the EU's FP7/2007-2013 project“Oxide Materials Towards a Matured Post-silicon Electronics Era-ORAMA”(contract no.NMP3-LA-2010-246334)the project“Electronics Beyond Silicon Era”(ELBESIER)Erasmus+KА2 programme.
文摘ZnO-based n/p homojunctions were fabricated by sputtering from a single zinc nitride target at room temperature on metal or ITO-coated glass and Si substrates.A multi-target rf-sputtering system was used for the growth of all oxide films as multilayers in a single growth run without breaking the vacuum in the growth chamber.The nitrogen-containing films(less than 1.5 at.% of nitrogen)were n-type ZnO when deposited in oxygen-deficient Ar plasma(10%O_(2))and p-type ZnO when deposited in oxygen-rich Ar plasma(50%O_(2)).The all-oxide homojunction ITO/n-ZnO/p-ZnO/ITO/glass was fabricated in a single deposition run and exhibited visible transparency in the range of 75-85%.The n/p ZnO homojunctions,having metallic contacts,formed on conventionally processed substrates showed a fairly unstable behavior concerning the current-voltage characteristics.However,the same homojunctions formed on Si_(3)N_(4)-patterned substrates and stored in atmosphere for a period of five months were stable exhibiting a turn-on voltage of around 1.5 V.The realization of a room temperature sputtered transparent and stable ZnO homojunction paves the way to the realization of all-oxide transparent optoelectronic devices.