We have studied the quantum and classical motions of a single Paul trapped ion interacting with a timeperiodic laser field. By using the test-function method, we construct n exact solutions of quantum dynamics that de...We have studied the quantum and classical motions of a single Paul trapped ion interacting with a timeperiodic laser field. By using the test-function method, we construct n exact solutions of quantum dynamics that describe the generalized squeezed coherent states with the expectation orbits being the corresponding classical ones. The spacetime evolutions of the exact probability densities show some wavepacket trains. It is demonstrated analytically that by adjusting the laser intensity and frequency, we can control the center motions of the wavepacket trains. We also discuss the other physical properties such as the expectation value of energy, the widths and heights of the wavepackets, and the resonance loss of stability.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575034 and 10275023, and the Laboratory of Magnetic Resonance and Atomic and Molccular Physics of China under Grant No. T152504
文摘We have studied the quantum and classical motions of a single Paul trapped ion interacting with a timeperiodic laser field. By using the test-function method, we construct n exact solutions of quantum dynamics that describe the generalized squeezed coherent states with the expectation orbits being the corresponding classical ones. The spacetime evolutions of the exact probability densities show some wavepacket trains. It is demonstrated analytically that by adjusting the laser intensity and frequency, we can control the center motions of the wavepacket trains. We also discuss the other physical properties such as the expectation value of energy, the widths and heights of the wavepackets, and the resonance loss of stability.