针对宽带多极化雷达,提出将高分辨一维距离像(high resolution range profile,HRRP)与极化信息相结合的算法,获得目标在4种极化组态下的一维距离像并将其组成极化距离矩阵.该算法对目标进行全方位的特征抽取与建模,以适应不同的姿态,有...针对宽带多极化雷达,提出将高分辨一维距离像(high resolution range profile,HRRP)与极化信息相结合的算法,获得目标在4种极化组态下的一维距离像并将其组成极化距离矩阵.该算法对目标进行全方位的特征抽取与建模,以适应不同的姿态,有助于减少高分辨一维距离像方位敏感性带来的影响.然后提出了直接基于极化距离矩阵、Pauli分解和Freeman分解三种特征提取方式对极化距离矩阵进行目标特征的提取,并将获得的目标特征向量结合起来送入搭建的深度卷积神经网络进行训练学习.该方法不仅结合了不同的特征提取方式以对极化距离矩阵进行更全面的特征提取,而且深度卷积神经网络的运用又对目标特征向量进行了深层学习,仿真结果验证了该方法的有效性.展开更多
文摘针对宽带多极化雷达,提出将高分辨一维距离像(high resolution range profile,HRRP)与极化信息相结合的算法,获得目标在4种极化组态下的一维距离像并将其组成极化距离矩阵.该算法对目标进行全方位的特征抽取与建模,以适应不同的姿态,有助于减少高分辨一维距离像方位敏感性带来的影响.然后提出了直接基于极化距离矩阵、Pauli分解和Freeman分解三种特征提取方式对极化距离矩阵进行目标特征的提取,并将获得的目标特征向量结合起来送入搭建的深度卷积神经网络进行训练学习.该方法不仅结合了不同的特征提取方式以对极化距离矩阵进行更全面的特征提取,而且深度卷积神经网络的运用又对目标特征向量进行了深层学习,仿真结果验证了该方法的有效性.