Hardware Trojans in integrated circuit chips have the characteristics of being covert,destructive,and difficult to protect,which have seriously endangered the security of the chips themselves and the information syste...Hardware Trojans in integrated circuit chips have the characteristics of being covert,destructive,and difficult to protect,which have seriously endangered the security of the chips themselves and the information systems to which they belong.Existing solutions generally rely on passive detection techniques.In this paper,a hardware Trojans active defense mechanism is designed for network switching chips based on the principle of encryption algorithm.By encoding the data entering the chip,the argot hidden in the data cannot trigger the hardware Trojans that may exist in the chip,so that the chip can work normally even if it is implanted with a hardware Trojans.The proposed method is proved to be effective in preventing hardware Trojans with different trigger characteristics by simulation tests and practical tests on our secure switching chip.展开更多
To improve the resource utilization ratio and shorten the recovery time of the shared path protection with differentiated reliability (SPP-DiR) algorithm, an algorithm called dynamic shared segment protection with d...To improve the resource utilization ratio and shorten the recovery time of the shared path protection with differentiated reliability (SPP-DiR) algorithm, an algorithm called dynamic shared segment protection with differentiated reliability (DSSP-DiR) is proposed for survivable GMPLS networks. In the proposed algorithm, a primary path is dynamically divided into several segments according to the differentiated reliability requirements of the customers. In the SPP-DiR algorithm, the whole primary path should be protected, while in the DSSP- DiR algorithm, only partial segments on the primary path need to be protected, which can reduce more backup bandwidths than that in the SPP-DiR algorithm. Simulation results show that the DSSP-DiR algorithm achieves higher resource utilization ratio, lower protection failure probability, and shorter recovery time than the SPP-DiR algorithm.展开更多
The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air arou...The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.展开更多
The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics on...The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics only taking crosspoint faults into account,a novel Input and Output Parallel Clos network,referred to as the(p_1,p_2)-IOPClos,is proposed to tolerate both cross-point and SE faults.In the(p_1,p_2)-IOPClos,there are p_1 and p_2 expanded parallel switching planes in the input and output stages,respectively.The multiple input/output switching planes are interconnected through the middle stage to provide multiple paths in each stage by which the network throughput can be increased remarkably.Furthermore,the network reliability of the(p_1,p_2)-IOPClos under the above both kinds of faults is analyzed.The corresponding implementation cost is also presented along with the network size.Both theoretical analysis and numerical results indicate that the(p_1,p_2)-IOPClos outperforms traditional Clos-type networks at reliability,while has less implementation cost than the multi-plane Clos network.展开更多
Since distribution sector is inherent into high amount of failures, distribution companies (DISCOs) are responsible of attaining an acceptable value for the reliability indices and otherwise they will face up to compl...Since distribution sector is inherent into high amount of failures, distribution companies (DISCOs) are responsible of attaining an acceptable value for the reliability indices and otherwise they will face up to complaints. So they are usually obligated by regulators to invest on reliability improvement of network. But this investment on reliability is usually from the DISCO’s viewpoint and is also irrespective of customer satisfaction level. In other words, customers are not at the same level of sensitivity to interruptions but DISCO improves the reliability of network without considering the differences in importance degree of loads and their level of reliability requirement. On the other hand DISCOs attempt to reduce their investment costs as much as possible. This paper introduces a novel approach in the field of joint switch placement that can reduce the switch cost from the perspective of asset management policies. To this end, two switch placement plannings in different types of strategies are performed to compare their results. Firstly as witch placement is performed based on reducing the total energy not supplied (ENS) of the system. Then by revising the strategy, a fuzzy switch placement is performed from the DISCO’s point of view which just considers the total ENS of load points most sensitive to interruptions known as important or critical loads. Furthermore, by meeting the related constraints, the reliability of low sensitive customers is disregarded. This is a load importance based planning which can result in switch cost reduction relative to the amount achieved in previous strategy and implies the management of risks associated with reliability and respective constraint. Fuzzy method and new switching mechanism in fuzzy environment of network are implemented to modeling and controlling the risks associated to ENS of critical loads and also the ENS of system.展开更多
The resistive random access memory(RRAM)has stimulated a variety of promising applications including programmable analog circuit,massive data storage,neuromorphic computing,etc.These new emerging applications have hug...The resistive random access memory(RRAM)has stimulated a variety of promising applications including programmable analog circuit,massive data storage,neuromorphic computing,etc.These new emerging applications have huge demands on high integration density and low power consumption.The cross-point configuration or passive array,which offers the smallest footprint of cell size and feasible capability of multi-layer stacking,has received broad attention from the research community.In such array,correct operation of reading and writing on a cell relies on effective elimination of the sneaking current coming from the neighboring cells.This target requires nonlinear I-V characteristics of the memory cell,which can be realized by either adding separate selector or developing implicit build-in nonlinear cells.The performance of a passive array largely depends on the cell nonlinearity,reliability,on/off ratio,line resistance,thermal coupling,etc.This article provides a comprehensive review on the progress achieved concerning 3D RRAM integration.First,the authors start with a brief overview of the associative problems in passive array and the category of 3D architectures.Next,the state of the arts on the development of various selector devices and self-selective cells are presented.Key parameters that influence the device nonlinearity and current density are outlined according to the corresponding working principles.Then,the reliability issues in 3D array are summarized in terms of uniformity,endurance,retention,and disturbance.Subsequently,scaling issue and thermal crosstalk in 3D memory array are thoroughly discussed,and applications of 3D RRAM beyond storage,such as neuromorphic computing and CMOL circuit are discussed later.Summary and outlooks are given in the final.展开更多
A split-gate SiC trench gate MOSFET with stepped thick oxide, source-connected split-gate(SG), and p-type pillar(ppillar) surrounded thick oxide shielding region(GSDP-TMOS) is investigated by Silvaco TCAD simulations....A split-gate SiC trench gate MOSFET with stepped thick oxide, source-connected split-gate(SG), and p-type pillar(ppillar) surrounded thick oxide shielding region(GSDP-TMOS) is investigated by Silvaco TCAD simulations. The sourceconnected SG region and p-pillar shielding region are introduced to form an effective two-level shielding, which reduces the specific gate–drain charge(Q_(gd,sp)) and the saturation current, thus reducing the switching loss and increasing the short-circuit capability. The thick oxide that surrounds a p-pillar shielding region efficiently protects gate oxide from being damaged by peaked electric field, thereby increasing the breakdown voltage(BV). Additionally, because of the high concentration in the n-type drift region, the electrons diffuse rapidly and the specific on-resistance(Ron,sp) becomes smaller.In the end, comparing with the bottom p~+ shielded trench MOSFET(GP-TMOS), the Baliga figure of merit(BFOM,BV~2/R_(on,sp)) is increased by 169.6%, and the high-frequency figure of merit(HF-FOM, R_(on,sp) × Q_(gd,sp)) is improved by310%, respectively.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
In order to improve the reliability of an electronic or a computer system, redundant components always need to be added as part of the system. When an active component falls, a standby component will be activated to g...In order to improve the reliability of an electronic or a computer system, redundant components always need to be added as part of the system. When an active component falls, a standby component will be activated to guarantee the system in operation continuously. The standby component and the switching device have been usually assumed to be continuously functional duriv,g the setup of the reliability model. In fact, it is these two asstuxtptions that induce deviations during modeling and introduce variances for the system reliability design. Through modeling and optiming the dependability of the synchronous clock system that decomposed from a multi-node system, a new reliability model which takes these two elements into consideration has been developed. Simulation results demonstrate that the upgraded reliability model is closer Io the actual dependability of the real system. The capability of the system reliability design is also improved as a result.展开更多
快脉冲直线型变压器驱动源(fast linear transformer driver,FLTD)是建设下一代大型Z箍缩装置最有前景的技术路线之一。大型FLTD脉冲源中数以万计气体开关的可靠运行是提高Z箍缩装置可靠性的重要因素。该文基于15 MAZ箍缩科学实验装置的...快脉冲直线型变压器驱动源(fast linear transformer driver,FLTD)是建设下一代大型Z箍缩装置最有前景的技术路线之一。大型FLTD脉冲源中数以万计气体开关的可靠运行是提高Z箍缩装置可靠性的重要因素。该文基于15 MAZ箍缩科学实验装置的FLTD脉冲源设计,采用Monte-Carlo方法建立考虑支路开关自放电及其载荷共享效应的FLTD脉冲源可靠性计算模型,分析开关故障模式及其触发策略对脉冲源可靠性的影响。结果表明,主支路开关自放电产生的故障电压会引起开关级联自放电,降低装置可靠性。若主支路开关工作系数设定在0.5~0.7范围内,FLTD脉冲源故障率可低于1×10^(-4)。此外,触发器及触发支路开关的高可靠性对于提升脉冲源可靠性至关重要,增加触发器脉冲数量、降低触发器自放电故障率能够有效提升脉冲源可靠性,当触发器脉冲数量提升至4倍后,FLTD脉冲源故障率有望降低至1×10^(-5)以下。研究结果为大型FLTD脉冲源的开关工作系数及触发策略的选取提供参考,具有重要的工程应用价值。展开更多
文摘Hardware Trojans in integrated circuit chips have the characteristics of being covert,destructive,and difficult to protect,which have seriously endangered the security of the chips themselves and the information systems to which they belong.Existing solutions generally rely on passive detection techniques.In this paper,a hardware Trojans active defense mechanism is designed for network switching chips based on the principle of encryption algorithm.By encoding the data entering the chip,the argot hidden in the data cannot trigger the hardware Trojans that may exist in the chip,so that the chip can work normally even if it is implanted with a hardware Trojans.The proposed method is proved to be effective in preventing hardware Trojans with different trigger characteristics by simulation tests and practical tests on our secure switching chip.
基金supported by the National Natural Science Foundation of China (60673142)Applied Basic Research Project of Sichuan Province (2006J13-067)
文摘To improve the resource utilization ratio and shorten the recovery time of the shared path protection with differentiated reliability (SPP-DiR) algorithm, an algorithm called dynamic shared segment protection with differentiated reliability (DSSP-DiR) is proposed for survivable GMPLS networks. In the proposed algorithm, a primary path is dynamically divided into several segments according to the differentiated reliability requirements of the customers. In the SPP-DiR algorithm, the whole primary path should be protected, while in the DSSP- DiR algorithm, only partial segments on the primary path need to be protected, which can reduce more backup bandwidths than that in the SPP-DiR algorithm. Simulation results show that the DSSP-DiR algorithm achieves higher resource utilization ratio, lower protection failure probability, and shorter recovery time than the SPP-DiR algorithm.
文摘The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.
基金supported by the National Natural Science Foundation of China(91338108,91438206)
文摘The harsh space radiation environment compromises the reliability of an on-board switching fabric by leading to cross-point and switching element(SE)faults.Different from traditional faulttolerant switching fabrics only taking crosspoint faults into account,a novel Input and Output Parallel Clos network,referred to as the(p_1,p_2)-IOPClos,is proposed to tolerate both cross-point and SE faults.In the(p_1,p_2)-IOPClos,there are p_1 and p_2 expanded parallel switching planes in the input and output stages,respectively.The multiple input/output switching planes are interconnected through the middle stage to provide multiple paths in each stage by which the network throughput can be increased remarkably.Furthermore,the network reliability of the(p_1,p_2)-IOPClos under the above both kinds of faults is analyzed.The corresponding implementation cost is also presented along with the network size.Both theoretical analysis and numerical results indicate that the(p_1,p_2)-IOPClos outperforms traditional Clos-type networks at reliability,while has less implementation cost than the multi-plane Clos network.
文摘Since distribution sector is inherent into high amount of failures, distribution companies (DISCOs) are responsible of attaining an acceptable value for the reliability indices and otherwise they will face up to complaints. So they are usually obligated by regulators to invest on reliability improvement of network. But this investment on reliability is usually from the DISCO’s viewpoint and is also irrespective of customer satisfaction level. In other words, customers are not at the same level of sensitivity to interruptions but DISCO improves the reliability of network without considering the differences in importance degree of loads and their level of reliability requirement. On the other hand DISCOs attempt to reduce their investment costs as much as possible. This paper introduces a novel approach in the field of joint switch placement that can reduce the switch cost from the perspective of asset management policies. To this end, two switch placement plannings in different types of strategies are performed to compare their results. Firstly as witch placement is performed based on reducing the total energy not supplied (ENS) of the system. Then by revising the strategy, a fuzzy switch placement is performed from the DISCO’s point of view which just considers the total ENS of load points most sensitive to interruptions known as important or critical loads. Furthermore, by meeting the related constraints, the reliability of low sensitive customers is disregarded. This is a load importance based planning which can result in switch cost reduction relative to the amount achieved in previous strategy and implies the management of risks associated with reliability and respective constraint. Fuzzy method and new switching mechanism in fuzzy environment of network are implemented to modeling and controlling the risks associated to ENS of critical loads and also the ENS of system.
基金the National Key R&D Program of China(Grant Nos.2018YFB0407501 and 2016YFA0201800)the National Natural Science Foundation of China(Grant Nos.61804173,61922083,61804167,61904200,and 61821091)the fourth China Association for Science and Technology Youth Talent Support Project(Grant No.2019QNRC001).
文摘The resistive random access memory(RRAM)has stimulated a variety of promising applications including programmable analog circuit,massive data storage,neuromorphic computing,etc.These new emerging applications have huge demands on high integration density and low power consumption.The cross-point configuration or passive array,which offers the smallest footprint of cell size and feasible capability of multi-layer stacking,has received broad attention from the research community.In such array,correct operation of reading and writing on a cell relies on effective elimination of the sneaking current coming from the neighboring cells.This target requires nonlinear I-V characteristics of the memory cell,which can be realized by either adding separate selector or developing implicit build-in nonlinear cells.The performance of a passive array largely depends on the cell nonlinearity,reliability,on/off ratio,line resistance,thermal coupling,etc.This article provides a comprehensive review on the progress achieved concerning 3D RRAM integration.First,the authors start with a brief overview of the associative problems in passive array and the category of 3D architectures.Next,the state of the arts on the development of various selector devices and self-selective cells are presented.Key parameters that influence the device nonlinearity and current density are outlined according to the corresponding working principles.Then,the reliability issues in 3D array are summarized in terms of uniformity,endurance,retention,and disturbance.Subsequently,scaling issue and thermal crosstalk in 3D memory array are thoroughly discussed,and applications of 3D RRAM beyond storage,such as neuromorphic computing and CMOL circuit are discussed later.Summary and outlooks are given in the final.
基金the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045)the National Research and Development Program for Major Research Instruments of China (Grant No. 62027814)the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212BAB214047)。
文摘A split-gate SiC trench gate MOSFET with stepped thick oxide, source-connected split-gate(SG), and p-type pillar(ppillar) surrounded thick oxide shielding region(GSDP-TMOS) is investigated by Silvaco TCAD simulations. The sourceconnected SG region and p-pillar shielding region are introduced to form an effective two-level shielding, which reduces the specific gate–drain charge(Q_(gd,sp)) and the saturation current, thus reducing the switching loss and increasing the short-circuit capability. The thick oxide that surrounds a p-pillar shielding region efficiently protects gate oxide from being damaged by peaked electric field, thereby increasing the breakdown voltage(BV). Additionally, because of the high concentration in the n-type drift region, the electrons diffuse rapidly and the specific on-resistance(Ron,sp) becomes smaller.In the end, comparing with the bottom p~+ shielded trench MOSFET(GP-TMOS), the Baliga figure of merit(BFOM,BV~2/R_(on,sp)) is increased by 169.6%, and the high-frequency figure of merit(HF-FOM, R_(on,sp) × Q_(gd,sp)) is improved by310%, respectively.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
文摘In order to improve the reliability of an electronic or a computer system, redundant components always need to be added as part of the system. When an active component falls, a standby component will be activated to guarantee the system in operation continuously. The standby component and the switching device have been usually assumed to be continuously functional duriv,g the setup of the reliability model. In fact, it is these two asstuxtptions that induce deviations during modeling and introduce variances for the system reliability design. Through modeling and optiming the dependability of the synchronous clock system that decomposed from a multi-node system, a new reliability model which takes these two elements into consideration has been developed. Simulation results demonstrate that the upgraded reliability model is closer Io the actual dependability of the real system. The capability of the system reliability design is also improved as a result.
文摘快脉冲直线型变压器驱动源(fast linear transformer driver,FLTD)是建设下一代大型Z箍缩装置最有前景的技术路线之一。大型FLTD脉冲源中数以万计气体开关的可靠运行是提高Z箍缩装置可靠性的重要因素。该文基于15 MAZ箍缩科学实验装置的FLTD脉冲源设计,采用Monte-Carlo方法建立考虑支路开关自放电及其载荷共享效应的FLTD脉冲源可靠性计算模型,分析开关故障模式及其触发策略对脉冲源可靠性的影响。结果表明,主支路开关自放电产生的故障电压会引起开关级联自放电,降低装置可靠性。若主支路开关工作系数设定在0.5~0.7范围内,FLTD脉冲源故障率可低于1×10^(-4)。此外,触发器及触发支路开关的高可靠性对于提升脉冲源可靠性至关重要,增加触发器脉冲数量、降低触发器自放电故障率能够有效提升脉冲源可靠性,当触发器脉冲数量提升至4倍后,FLTD脉冲源故障率有望降低至1×10^(-5)以下。研究结果为大型FLTD脉冲源的开关工作系数及触发策略的选取提供参考,具有重要的工程应用价值。