An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be eff...An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process.By decreasing the partial pressure of the gaseous products,chlorination was promoted.The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process.CaCl_(2) dosage and roasting temperature and time were used as variables,and metal recovery efficiencies were used as responses.When the roasting temperature was 1172℃ with a CaCl_(2) addition amount of 30 wt.%and a roasting time of 100 min,the predicted optimal recovery efficiencies of Zn and Pb were 87.85%and 99.26%,respectively,and the results were validated by experiments under the same conditions.The residual Zn-and Pb-containing phases in the roasting slags were ZnFe_(2)O_(4),Zn_(2)SiO_(4),and PbS.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51620105013,51904351)Innovation-Driven Project of Central South University,China(No.2020CX028)+1 种基金Natural Science Fund for Distinguished Young Scholar of Hunan Province,China(No.2019JJ20031)the National Key R&D Program of China(No.2019YFC1907400)。
文摘An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process.By decreasing the partial pressure of the gaseous products,chlorination was promoted.The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process.CaCl_(2) dosage and roasting temperature and time were used as variables,and metal recovery efficiencies were used as responses.When the roasting temperature was 1172℃ with a CaCl_(2) addition amount of 30 wt.%and a roasting time of 100 min,the predicted optimal recovery efficiencies of Zn and Pb were 87.85%and 99.26%,respectively,and the results were validated by experiments under the same conditions.The residual Zn-and Pb-containing phases in the roasting slags were ZnFe_(2)O_(4),Zn_(2)SiO_(4),and PbS.
基金Project(2019YFC1803601)supported by the National Key Research and Development Program of ChinaProject(2022)supported by the Complementary Fund from the Guizhou Provincial Department of Science and Technology,China。