Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/Si...The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and t...Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.展开更多
The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or mic...The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water.展开更多
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g...In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.展开更多
The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrot...The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.展开更多
CoFe_(2)O_(4)has been widely used for electromagnetic wave absorption owing to its high Snoek limit,high anisotropy,and suitable saturation magnetization;however,its inherent shortcomings,including low dielectric loss...CoFe_(2)O_(4)has been widely used for electromagnetic wave absorption owing to its high Snoek limit,high anisotropy,and suitable saturation magnetization;however,its inherent shortcomings,including low dielectric loss,high density,and magnetic agglomeration,limit its application as an ideal absorbent.This study investigated a microstructure regulation strategy to mitigate the inherent disadvantages of pristine CoFe_(2)O_(4)synthesized via a sol–gel auto-combustion method.A series of CoFe_(2)O_(4)foams(S0.5,S1.0,and S1.5,corresponding to foams with citric acid(CA)-to-Fe(NO_(3))_(3)·9H_(2)O molar ratios of 0.5,1.0,and 1.5,respectively)with two-dimensional(2D)curved surfaces were obtained through the adjustment of CA-to-Fe^(3+)ratio,and the electromagnetic parameters were adjusted through morphology regulation.Owing to the appropriate impedance matching and conductance loss provided by moderate complex permittivity,the effective absorption bandwidth(EAB)of S0.5 was as high as 7.3 GHz,exceeding those of most CoFe_(2)O_(4)-based absorbents.Moreover,the EAB of S1.5 reached 5.0 GHz(8.9–13.9 GHz),covering most of the X band,owing to the intense polarization provided by lattice defects and the heterogeneous interface.The three-dimensional(3D)foam structure circumvented the high density and magnetic agglomeration issues of CoFe_(2)O_(4)nanoparticles,and the good conductivity of 2D curved surfaces could effectively elevate the complex permittivity to ameliorate the dielectric loss of pure CoFe_(2)O_(4).This study provides a novel idea for the theoretical design and practical production of lightweight and broadband pure ferrites.展开更多
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.D5000210522 and D5000210517)China Postdoctoral Science Foundation(Grant No.2021M702665)+2 种基金Natural Science Foundation of Shaanxi Province(Grant Nos.2022JQ-482 and 2023-JC-QN-0380)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155,2022A1515111200 and 2022A1515011191)Basic Research Programs of Taicang(Grant Nos.TC2021JC01,TC2021JC21,and TC2022JC08)。
文摘The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.
基金supported by National Research Foundation of Korea (NRF)funded by the Ministry of Education (2021R1A6A1A03039696,2022R1A2C2009412)
文摘Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.
基金financial support from National Natural Science Foundation of China(22108263)Shanxi Province Basic Research Program Project(20210302124060)the 18th Graduate Student Technology Project of North University of China(20221824).
文摘The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water.
基金supported by Research Project Supported by Horizon Europe Framework Programme(101183092)Shanxi Scholarship Council of China(2023-128)+2 种基金National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618)Small and mediumsized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)。
文摘In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.
基金This work was supported by the National Natural Science Foundation of China(No.51477002)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2019-028).
文摘The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.
基金supported by the National Natural Science Foundation of China (Nos.22004106 and 51872238)。
文摘CoFe_(2)O_(4)has been widely used for electromagnetic wave absorption owing to its high Snoek limit,high anisotropy,and suitable saturation magnetization;however,its inherent shortcomings,including low dielectric loss,high density,and magnetic agglomeration,limit its application as an ideal absorbent.This study investigated a microstructure regulation strategy to mitigate the inherent disadvantages of pristine CoFe_(2)O_(4)synthesized via a sol–gel auto-combustion method.A series of CoFe_(2)O_(4)foams(S0.5,S1.0,and S1.5,corresponding to foams with citric acid(CA)-to-Fe(NO_(3))_(3)·9H_(2)O molar ratios of 0.5,1.0,and 1.5,respectively)with two-dimensional(2D)curved surfaces were obtained through the adjustment of CA-to-Fe^(3+)ratio,and the electromagnetic parameters were adjusted through morphology regulation.Owing to the appropriate impedance matching and conductance loss provided by moderate complex permittivity,the effective absorption bandwidth(EAB)of S0.5 was as high as 7.3 GHz,exceeding those of most CoFe_(2)O_(4)-based absorbents.Moreover,the EAB of S1.5 reached 5.0 GHz(8.9–13.9 GHz),covering most of the X band,owing to the intense polarization provided by lattice defects and the heterogeneous interface.The three-dimensional(3D)foam structure circumvented the high density and magnetic agglomeration issues of CoFe_(2)O_(4)nanoparticles,and the good conductivity of 2D curved surfaces could effectively elevate the complex permittivity to ameliorate the dielectric loss of pure CoFe_(2)O_(4).This study provides a novel idea for the theoretical design and practical production of lightweight and broadband pure ferrites.