The effect of Ce on the behavior of gas evolution on Pb-Ca-Sn alloy in 4.5 mol·L^-1 H2SO4 was investigated using cyclic voltammetry (CV), cathodic polarization curves and AC impedance (EIS). Cyclic voltammetr...The effect of Ce on the behavior of gas evolution on Pb-Ca-Sn alloy in 4.5 mol·L^-1 H2SO4 was investigated using cyclic voltammetry (CV), cathodic polarization curves and AC impedance (EIS). Cyclic voltammetry experiments show that the current of oxygen evolution on Pb-Ca-Sn-Ce electrode is lower than that of Pb-Ca-Sn electrode in the same anodic voltage. Moreover, the oxygen evolution potential on the former electrode is greater than that on the latter, and this means that Ce can increase the potential of oxygen evolution on Pb-Ca-Sn alloy. The AC impedance experiments show that Ce can also enhance the resistance of hydrogen evolution on Pb-Ca-Sn electrode, i.e., Ce can inhibit the hydrogen evolution on Pb-Ca-Sn electrode. The reason why Ce decreases the volume of hydrogen evolution on Pb-Ca-Sn alloy is that Ce increases the resistance of absorbing step of hydrogen evolution reaction. All the experimental results indicate that Pb-Ca-Sn-Ce alloy can rapidly decrease the oxygen and hydrogen evolution on Pb-Ca-Sn-Ce alloy. It is concluded that Pb-Ca-Sn-Ce alloy can promote the maintenance-free property of lead acid battery, and can serve as the candidate of the grid material for maintenance-free lead acid battery.展开更多
The anodic films of novel Pb-Ca-Sn-Ce alloy, traditional Pb-Ca-Sn and Pb-Sb alloys formed in sulfuric solution at anodic +0.9 V potential corrosion for 6 h were investigated by means of XPS, XRD methods and AC impedan...The anodic films of novel Pb-Ca-Sn-Ce alloy, traditional Pb-Ca-Sn and Pb-Sb alloys formed in sulfuric solution at anodic +0.9 V potential corrosion for 6 h were investigated by means of XPS, XRD methods and AC impedance measurement. The results show that the growth of Pb(Ⅱ) oxide on the new Pb-Ca-Sn-Ce alloy surface is inhibited. The AC impedance measurement shows that resistance of the corrosion layer of novel Pb-Ca-Sn-Ce alloy decreases. It is found that the novel Pb-Ca-Sn-Ce alloy can encourage the development of PbO2 in the scale, and enhance the conductivity of the anodic scale. Hence the deep recycling properties of the battery can be expected better.展开更多
Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with diffe...Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with different diameters.The experimental results show the measured PDAS increases with increasing diameter of the sample.At the growth velocity of 5 μm/s,its value changes from 161.5 μm for the sample with 1.8 mm in diameter to 240.4 μm for the sample with 7 mm in diameter.The strong melt convection in large diameter samples causes a high bulk alloy composition and a high concentration gradient in peritectic β phase,resulting in a larger PDAS.Simultaneously,the high concentration gradient could effectively promote the peritectic transformation,enhancing the dissolution of the thin α dendrite.展开更多
The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grai...The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grain refinement of as-cast AZ31 alloy was investigated and the mechanism of the grain refinement was discussed. The results reveal that the addition of 1.1% Al2Ca (mass fraction) decreases the average grain size of as-cast AZ31 alloy from 354 to 198 μm. And the thermal stability of the grains refined by Al2Ca is superior. The grain refining mechanism is attributed to the combined effects of solute and heterogeneous nucleation from the Al2Ca.展开更多
The effects of the addition of 0.6%Ca(mass fraction) on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc magnesium alloys were investigated and compared by optical...The effects of the addition of 0.6%Ca(mass fraction) on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc magnesium alloys were investigated and compared by optical microscopy and scanning electron microscopy,differential scanning calorimetry analysis,and tensile and creep tests.The results indicate that the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can refine the grains of the two alloys.At the same time,the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can effectively improve the tensile properties of the two alloys.In addition,the addition of 0.6%Ca can also improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy but is not beneficial to the creep properties of the Mg-4Y-1.2Mn-0.9Sc alloy.The different effects of minor Ca on the creep properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys are possibly related to the difference in the solid solubilities of Ce and Y in Mg.展开更多
A molecular dynamics simulation study was performed to investigate the formation and evolution mechanisms of nano-clusters during the rapid solidification of liquid CaToMg30 alloy. The cluster-type index method (CTIM...A molecular dynamics simulation study was performed to investigate the formation and evolution mechanisms of nano-clusters during the rapid solidification of liquid CaToMg30 alloy. The cluster-type index method (CTIM) was adopted to describe microstructure evolutions of nano-clusters during solidification. Results indicate that amorphous structure is mainly formed with three bond-types of 1551, 1541 and 1431 at the cooling rate of 5~1011 K/S, and glass transition temperature Tg is about 530 K; the icosahedron cluster of (12 0 12 0) plays a key role in formation of amorphous structure, and smaller Mg atoms are much more probable to be central atoms of icosahedron clusters; and nano-clusters are mainly formed by combining medium-size clusters. Interestingly, it was also found that formation and evolution processes of the nano-cluster display a three-stage feature which is analogous to crystallization process of amorphous alloy.展开更多
利用线性电位扫描、恒电位阶跃、交流阻抗等方法分别研究了Pb Ca Bi合金被阳极或阴极极化后,表面上析氧、析氢以及合金腐蚀行为。结果表明:与Pb Ca合金相比,Pb Ca Bi合金可增加氧的析出,但抑制氢的析出,同时铋的加入,使Pb Ca耐蚀性提高...利用线性电位扫描、恒电位阶跃、交流阻抗等方法分别研究了Pb Ca Bi合金被阳极或阴极极化后,表面上析氧、析氢以及合金腐蚀行为。结果表明:与Pb Ca合金相比,Pb Ca Bi合金可增加氧的析出,但抑制氢的析出,同时铋的加入,使Pb Ca耐蚀性提高,且不同含量的铋对合金腐蚀有不同的影响。展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
文摘The effect of Ce on the behavior of gas evolution on Pb-Ca-Sn alloy in 4.5 mol·L^-1 H2SO4 was investigated using cyclic voltammetry (CV), cathodic polarization curves and AC impedance (EIS). Cyclic voltammetry experiments show that the current of oxygen evolution on Pb-Ca-Sn-Ce electrode is lower than that of Pb-Ca-Sn electrode in the same anodic voltage. Moreover, the oxygen evolution potential on the former electrode is greater than that on the latter, and this means that Ce can increase the potential of oxygen evolution on Pb-Ca-Sn alloy. The AC impedance experiments show that Ce can also enhance the resistance of hydrogen evolution on Pb-Ca-Sn electrode, i.e., Ce can inhibit the hydrogen evolution on Pb-Ca-Sn electrode. The reason why Ce decreases the volume of hydrogen evolution on Pb-Ca-Sn alloy is that Ce increases the resistance of absorbing step of hydrogen evolution reaction. All the experimental results indicate that Pb-Ca-Sn-Ce alloy can rapidly decrease the oxygen and hydrogen evolution on Pb-Ca-Sn-Ce alloy. It is concluded that Pb-Ca-Sn-Ce alloy can promote the maintenance-free property of lead acid battery, and can serve as the candidate of the grid material for maintenance-free lead acid battery.
文摘The anodic films of novel Pb-Ca-Sn-Ce alloy, traditional Pb-Ca-Sn and Pb-Sb alloys formed in sulfuric solution at anodic +0.9 V potential corrosion for 6 h were investigated by means of XPS, XRD methods and AC impedance measurement. The results show that the growth of Pb(Ⅱ) oxide on the new Pb-Ca-Sn-Ce alloy surface is inhibited. The AC impedance measurement shows that resistance of the corrosion layer of novel Pb-Ca-Sn-Ce alloy decreases. It is found that the novel Pb-Ca-Sn-Ce alloy can encourage the development of PbO2 in the scale, and enhance the conductivity of the anodic scale. Hence the deep recycling properties of the battery can be expected better.
基金Project(50395100)supported by the National Natural Science Foundation of ChinaProject(NCET-07-0692)supported by the New Century Talents Program of the Ministry of Education,ChinaProject(34-TP-2009)supported by Open Project of State Key Laboratory of Solidification Processing,China
文摘Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with different diameters.The experimental results show the measured PDAS increases with increasing diameter of the sample.At the growth velocity of 5 μm/s,its value changes from 161.5 μm for the sample with 1.8 mm in diameter to 240.4 μm for the sample with 7 mm in diameter.The strong melt convection in large diameter samples causes a high bulk alloy composition and a high concentration gradient in peritectic β phase,resulting in a larger PDAS.Simultaneously,the high concentration gradient could effectively promote the peritectic transformation,enhancing the dissolution of the thin α dendrite.
基金Projects(CSTC2013jcyj C60001,CSTC2013jcyj A50020,CSTC2014jcyjjq0041)supported by the Chongqing Science and Technology Commission,ChinaProjects(51531002,51171212,51474043)supported by the National Natural Science Foundation of China+1 种基金Projects(2013DFA71070,2013CB632200)supported by the National Science and Technology Program of ChinaProject(KJZH14101)supported by the Education Commission of Chongqing Municipality,China
文摘The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grain refinement of as-cast AZ31 alloy was investigated and the mechanism of the grain refinement was discussed. The results reveal that the addition of 1.1% Al2Ca (mass fraction) decreases the average grain size of as-cast AZ31 alloy from 354 to 198 μm. And the thermal stability of the grains refined by Al2Ca is superior. The grain refining mechanism is attributed to the combined effects of solute and heterogeneous nucleation from the Al2Ca.
基金Projects (CSTC2013jcyjC60001) supported by the Chongqing Science and Technology Commission of ChinaProject (KJ120834) supported by the Chongqing Education Commission of ChinaProject (CQUT1205) supported by the Open Funds from Key Laboratory of Manufacture and Test Techniques for Automobile Parts(Chongqing University of Technology),Ministry of Education,China
文摘The effects of the addition of 0.6%Ca(mass fraction) on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc magnesium alloys were investigated and compared by optical microscopy and scanning electron microscopy,differential scanning calorimetry analysis,and tensile and creep tests.The results indicate that the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can refine the grains of the two alloys.At the same time,the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can effectively improve the tensile properties of the two alloys.In addition,the addition of 0.6%Ca can also improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy but is not beneficial to the creep properties of the Mg-4Y-1.2Mn-0.9Sc alloy.The different effects of minor Ca on the creep properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys are possibly related to the difference in the solid solubilities of Ce and Y in Mg.
基金Project(50831003) supported by the National Natural Science Foundation of ChinaProject(20114BAB215026) supported by Jiangxi Provincial Natural Science Foundation,ChinaProject(ZD201002) supported by Fund for Basic Scientific Research of Gannan Medical University,China
文摘A molecular dynamics simulation study was performed to investigate the formation and evolution mechanisms of nano-clusters during the rapid solidification of liquid CaToMg30 alloy. The cluster-type index method (CTIM) was adopted to describe microstructure evolutions of nano-clusters during solidification. Results indicate that amorphous structure is mainly formed with three bond-types of 1551, 1541 and 1431 at the cooling rate of 5~1011 K/S, and glass transition temperature Tg is about 530 K; the icosahedron cluster of (12 0 12 0) plays a key role in formation of amorphous structure, and smaller Mg atoms are much more probable to be central atoms of icosahedron clusters; and nano-clusters are mainly formed by combining medium-size clusters. Interestingly, it was also found that formation and evolution processes of the nano-cluster display a three-stage feature which is analogous to crystallization process of amorphous alloy.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.