期刊文献+
共找到2,002篇文章
< 1 2 101 >
每页显示 20 50 100
Mitigated reaction kinetics between lithium metal anodes and electrolytes by alloying lithium metal with low-content magnesium
1
作者 Yang-Yang Wang Ya-Nan Wang +9 位作者 Nan Yao Shu-Yu Sun Xiao-Qing Ding Chen-Xi Bi Qian-Kui Zhang Zhao Zheng Cheng-Bin Jin Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期644-650,I0014,共8页
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv... Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes. 展开更多
关键词 Lithium metal anodes alloyING anode/electrolyte interface Reaction kinetics Pouch cell
下载PDF
Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface 被引量:3
2
作者 Shiyin Xie Yang Li Liubing Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期32-40,I0002,共10页
Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herei... Newly-proposed anode-free zinc-ion batteries(ZIBs)are promising to remarkably enhance the energy density of ZIBs,but are restricted by the unfavorable zinc deposition interface that causes poor cycling stability.Herein,we report a Cu-Zn alloy network-modulated zinc deposition interface to achieve stable anode-free ZIBs.The alloy network can not only stabilize the zinc deposition interface by suppressing 2D diffusion and corrosion reactions but also enhance zinc plating/stripping kinetics by accelerating zinc desolvation and nucleation processes.Consequently,the alloy network-modulated zinc deposition interface realizes high coulombic efficiency of 99.2%and high stability.As proof,Zn//Zn symmetric cells with the alloy network-modulated zinc deposition interface present long operation lifetimes of 1900 h at 1 m A/cm^(2)and 1200 h at 5 m A/cm^(2),significantly superior to Zn//Zn symmetric cells with unmodified zinc deposition interface(whose operation lifetime is shorter than 50 h),and meanwhile,Zn3V3O8cathodebased ZIBs with the alloy network-modified zinc anodes show notably enhanced rate capability and cycling performance than ZIBs with bare zinc anodes.As expected,the alloy network-modulated zinc deposition interface enables anode-free ZIBs with Zn3V3O8cathodes to deliver superior cycling stability,better than most currently-reported anode-free ZIBs.This work provides new thinking in constructing high-performance anode-free ZIBs and promotes the development of ZIBs. 展开更多
关键词 Zinc-ion battery Zinc anode Zinc deposition interface anode-free zinc-ion battery Cu-Zn alloy network
下载PDF
Designing Conformal Electrode-electrolyte Interface by Semi-solid NaK Anode for Sodium Metal Batteries
3
作者 YIN Chunsen CHEN Zeyuan WANG Xiuli 《材料科学与工程学报》 CAS CSCD 北大核心 2024年第4期533-543,共11页
Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf... Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode. 展开更多
关键词 Solid-state Na metal battery NaK alloy Gel electrolyte electrode-electrolyte interface dendrite free anode
下载PDF
Dual-function protective layer for highly reversible Zn anode
4
作者 Jiaming Li Hanhao Liang +6 位作者 Yini Long Xiao Yu Jiaqi Li Nan Li Junyi Han Jianglin Wang Zhanhong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期12-23,共12页
The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based... The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries. 展开更多
关键词 Protection layer Zn-Al-In layered double oxide Captures and anchors SO_(4)^(2-) Zn-In alloy phase Zn metal anode
下载PDF
High-Performance 3D Li-B-C-Al Alloy Anode and its Twofold Li Electrostripping and Plating Mechanism Revealed by Synchrotron X-Ray Tomography 被引量:1
5
作者 Fengcheng Tang Xia Zhang +9 位作者 Markus Osenberg Chao Yang Haifeng Huang Andr Hilger Masyuki Uesugi Kentaro Uesug Akihisa Takeuchi Ingo Manke Fu Sun Libao Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期247-256,共10页
The uncontrollable Li electrostripping and plating process that results in dendritic Li growth and huge volume change of Li anode limits the practicality of Li metal batteries(LMBs).To simultaneously address these iss... The uncontrollable Li electrostripping and plating process that results in dendritic Li growth and huge volume change of Li anode limits the practicality of Li metal batteries(LMBs).To simultaneously address these issues,designing three-dimensional(3D),lithiophilic and mechanically robust electrodes seems to be one of the cost-effective strategies.Herein,a new 3D Li-B-C-Al alloy anode is designed and fabricated.The prepared 3D alloy anode exhibits not only superior lithiophilicity that facilitates uniform Li nucleation and growth but also sufficient mechanical stability that maintains its structural integrity.Superior performance of the prepared 3D alloy is demonstrated through comprehensive electrochemical tests.In addition,non-destructive and 3D synchrotron X-ray computed tomography(SX-CT)technique is employed to investigate the underlying working mechanisms of the prepared alloy anode.A unique twofold Li electrostripping and plating mechanism under different electrochemical cycling conditions is revealed.Lastly,improved performance of the full cells built with the 3D alloy anode and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode corroborate its potential application capability.Overall,the current work not only showcases the superiority of the 3D alloy as potential anode material for LMBs but also provides fundamental insights into its underlying working mechanisms that may further propel its research and development. 展开更多
关键词 Li alloy Li metal anode Li metal battery Li-B-C-Al PLATING
下载PDF
Effectiveness Evaluation Study of Self-made Zinc Alloy Sacrificial Anode under Chloride Salt Erosion Environment
6
作者 南雪丽 JI Jianrui +3 位作者 LI Rongyang CHEN Hao WANG Yi TANG Weibin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期222-230,共9页
To investigate the effectiveness of self-made zinc alloy sacrificial anode material for the protection of reinforcement in concrete under chlorine salt erosion environment,salt solution immersion corrosion and electro... To investigate the effectiveness of self-made zinc alloy sacrificial anode material for the protection of reinforcement in concrete under chlorine salt erosion environment,salt solution immersion corrosion and electromigration accelerated corrosion tests were used to evaluate the effectiveness of self-made zinc alloy anode with the help of relevant cathodic protection guidelines and evaluation criteria for the corrosion of reinforcement in concrete.The results showed that the protection was effective because the potential of the zinc alloy anode protection steel bar in the salt solution satis?ed the“-780 mV(SCE)”validity criterion.The self-corrosion potential(E_(corr))of the sacri?cial anode protection steel in concrete was greater than-276 mV,and the protective current density of the zinc alloy anode was 1-3μA·cm^(-2),which met the standards of EN12696-2000,further indicating that the self-made zinc alloy sacri?cial anode had a good protection combining with the polarization resistance and the appearance of the corroded surface of the steel in concrete.The microscopic morphology of the corroded surface and the composition of the corrosion products indicates that the mortar of the self-made zinc alloy anode has a lower pH than the imported anodes,so the long-term protection of the selfmade zinc alloy sacri?cial anode needs to be further improved. 展开更多
关键词 zinc alloy anode cathodic protection steel corrosion CONCRETE polarization curve
下载PDF
Li^(+)Solvation Mediated Interfacial Kinetic of Alloying Matrix for Stable Li Anodes
7
作者 Xingyi Wang Kailin Luo +6 位作者 Lixin Xiong Tengpeng Xiong Zhendong Li Jie Sun Haiyong He Chuying Ouyang Zhe Peng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期70-80,共11页
Severe lithium(Li)dendrite growth caused by the uneven overpotential deposition is a formidable challenge for high energy density Li metal batteries(LMBs).Herein,we investigate a synergetic interfacial kinetic to regu... Severe lithium(Li)dendrite growth caused by the uneven overpotential deposition is a formidable challenge for high energy density Li metal batteries(LMBs).Herein,we investigate a synergetic interfacial kinetic to regulate Li deposition behavior and stabilize Li metal anode.Through constructing Li alloying matrix with a bi-functional silver(Ag)-Li_(3)N blended interface,fast Li^(+)conductivity and high Li affinity can be achieved simultaneously,resulting in both decreased Li nucleation and mass transfercontrolled overpotentials.Beyond these properties,a more important feature is demonstrated herein;that is,the inward diffusion depth of the Li adatoms inside of the Ag site can be restricted by the Li^(+)solvation structure in a highly coordinating environment.The latter feature can ensure the durability of the operational Ag sites,thereby elongating the Li protection ability of the Ag-Li_(3)N interface greatly.This work provides a deep insight into the synergetic effect of functional alloying structure and Li^(+)solvation mediated interfacial kinetic on Li metal protection. 展开更多
关键词 Li^(+)solvation structure Li-Ag alloy lithium metal anode lithium metal batteries SEI
下载PDF
Electrochemical properties of magnesium alloy anodes discharged in seawater 被引量:5
8
作者 余琨 黄俏 +1 位作者 赵俊 戴翌龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2184-2190,共7页
Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynami... Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys. 展开更多
关键词 magnesium alloy Mg-Ga-Hg alloy electrochemical properties seawater activated battery anode
下载PDF
Effects of Hg and Ga on microstructures and electrochemical corrosion behaviors of Mg anode alloys 被引量:1
9
作者 张嘉佩 王日初 +1 位作者 冯艳 彭超群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3039-3045,共7页
The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and mea... The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms. 展开更多
关键词 Mg anode alloy microstructure electrochemical activity corrosion resistance electrochemical impedance spectroscopy
下载PDF
A review on anode materials for lithium/sodium-ion batteries 被引量:17
10
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 Lithium/Sodium-ion batteries anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials alloying materials
下载PDF
Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes 被引量:9
11
作者 Ma Jingling Wen Jiuba +2 位作者 Li Xudong Zhao Shengli Yan Yanfu 《Rare Metals》 SCIE EI CAS CSCD 2009年第2期187-192,共6页
The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of th... The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chloride solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy,resulting... 展开更多
关键词 aluminum alloy sacrificial anode electrochemical performance MICROSTRUCTURE
下载PDF
In Situ Reaction Fabrication of a Mixed-Ion/Electron-Conducting Skeleton Toward Stable Lithium Metal Anodes 被引量:1
12
作者 Juhong He Liufeng Ai +4 位作者 Tengyu Yao Zhenming Xu Duo Chen Xiaogang Zhang Laifa Shen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期137-146,共10页
Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density.However,the uncontrollable lithium dendrites and volume change of lithium metal a... Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density.However,the uncontrollable lithium dendrites and volume change of lithium metal anodes severely hinder its application.In this work,the porous Cu skeleton modified with Cu_(6)Sn_(5)layer is prepared via dealloying brass foil following a facile electroless process.The porous Cu skeleton with large specific surface area and high electronic conductivity effectively reduces the local current density.The Cu_(6)Sn_(5)can react with lithium during the discharge process to form lithiophilic Li_(7)Sn_(2)in situ to promote Li-ions transport and reduce the nucleation energy barrier of lithium to guide the uniform lithium deposition.Therefore,more than 300 cycles at 1 mA cm^(−2)are achieved in the half-cell with an average Coulombic efficiency of 97.5%.The symmetric cell shows a superior cycle life of more than 1000 h at 1 mA cm^(−2)with a small average hysteresis voltage of 16 mV.When coupled with LiFePO_(4)cathode,the full cell also maintains excellent cycling and rate performance. 展开更多
关键词 Cu_(6)Sn_(5)layer dendrite-free lithium metal anode lithiophilic Li_(7)Sn_(2)alloy low diffusion energy barrier porous Cu skeleton
下载PDF
Review of silicon-based alloys for lithium-ion battery anodes 被引量:6
13
作者 Zhi-yuan Feng Wen-jie Peng +4 位作者 Zhi-xing Wang Hua-jun Guo Xin-hai Li Guo-chun Yan Jie-xi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1549-1564,共16页
Silicon(Si)is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium(Li)-ion batteries(LIBs)because it has a high theoretical gravimetric Li storage... Silicon(Si)is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium(Li)-ion batteries(LIBs)because it has a high theoretical gravimetric Li storage capacity,relatively low lithiation voltage,and abundant resources.Consequently,massive efforts have been exerted to improve its electrochemical performance.While some progress in this field has been achieved,a number of severe challenges,such as the element’s large volume change during cycling,low intrinsic electronic conductivity,and poor rate capacity,have yet to be solved.Methods to solve these problems have been attempted via the development of nanosized Si materials.Unfortunately,reviews summarizing the work on Si-based alloys are scarce.Herein,the recent progress related to Si-based alloy anode materials is reviewed.The problems associated with Si anodes and the corresponding strategies used to address these problems are first described.Then,the available Si-based alloys are divided into Si/Li-active and inactive systems,and the characteristics of these systems are discussed.Other special systems are also introduced.Finally,perspectives and future outlooks are provided to enable the wider application of Si-alloy anodes to commercial LIBs. 展开更多
关键词 SILICON alloy anode lithium-ion battery
下载PDF
Surface‑Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High‑Performance Aqueous Zinc‑Ion Battery 被引量:7
14
作者 Huan Meng Qing Ran +8 位作者 Tian-Yi Dai Hang Shi Shu-Pei Zeng Yong-Fu Zhu Zi Wen Wei Zhang Xing-You Lang Wei-Tao Zheng Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期58-71,共14页
Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large vol... Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large voltage polarization,low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating,hindering the practical application in aqueous rechargeable zinc-metal batteries(AR-ZMBs).Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials.As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples,the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte,with ultralow polarizations under current densities up to 50 mA cm^(‒2),exceptional stability for 1900 h and high Zn utilization.This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and K_(z)MnO_(2)cathode to achieve specific energy of as high as~430 Wh kg^(‒1)with~99.8%Coulombic efficiency,and retain~86%after long-term cycles for>700 h. 展开更多
关键词 Nanoporous metal Zinc-based alloy anode Aqueous zinc-ion batteries Surface alloying
下载PDF
Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery 被引量:3
15
作者 Fanglei Tong Xize Chen +3 位作者 Shanghai Wei Jenny Malmstr^m Joseph Vella Wei Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1967-1976,共10页
Four Mg-x Zn-y Sn(x=2,4 and y=1,3 wt.%)alloys are investigated as anode materials for magnesium-air(Mg-air)battery.The self-corrosion and battery discharge behavior of these four Mg-Zn-Sn alloys are analyzed by electr... Four Mg-x Zn-y Sn(x=2,4 and y=1,3 wt.%)alloys are investigated as anode materials for magnesium-air(Mg-air)battery.The self-corrosion and battery discharge behavior of these four Mg-Zn-Sn alloys are analyzed by electrochemical measurements and Mg-air battery tests.The results show that addition of Sn stimulates the electrochemical activity and significantly improves the anodic efficiency and specific capacity of Mg-Zn alloy anodes.Among the four alloy anodes,Mg-2Zn-3Sn(ZT23)shows the best battery discharge performance at low current densities(≤5 m A cm^(-2)),achieving high energy density of 1367 m Wh g^(-1)at 2 mA cm^(-2).After battery discharging,the surface morphology and electrochemical measurement results illustrate that a ZnO and SnO/SnO_(2)mixed film on alloy anode surface decreases self-corrosion and improves anodic efficiency during discharging.The excessive intermetallic phases lead to the failure of passivation films,acting as micro-cathodes to accelerate self-corrosion. 展开更多
关键词 Magnesium alloys alloy anode Self-corrosion Magnesium-air battery Discharge performance
下载PDF
Effect of rolling processing on microstructure and electrochemical properties of high active aluminum alloy anode 被引量:3
16
作者 梁叔全 张勇 +2 位作者 官迪凯 唐艳 毛志伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期942-949,共8页
The effect of rolling processing on the microstructure,electrochemical property and anti-corrosion property of Al-Mg-Sn-Bi-Ga-In alloy anode in alkaline solution(80℃,Na2SnO3+5 mol/L NaOH)was analyzed by the chronopot... The effect of rolling processing on the microstructure,electrochemical property and anti-corrosion property of Al-Mg-Sn-Bi-Ga-In alloy anode in alkaline solution(80℃,Na2SnO3+5 mol/L NaOH)was analyzed by the chronopotentiometry (E-T curves),hydrogen collection tests and modern microstructure analysis.The results show that when the rolling temperature is 370℃,the electrochemical activity of Al anode decreases gradually with the increase of pass deformation in rolling,while the anti-corrosion property is improved in the beginning and then declined rapidly.When the pass deformation of rolling is 40%,the Al anode has good electrochemical activity as good as the anti-corrosion property and with the increase of rolling temperature,both electrochemical activity and anti-corrosion property of Al anode increase first and then decrease.When the rolling temperature is 420 ℃,the aluminum alloy anode has the most negative electrode potential of about-1.521 V(vs Hg/HgO)and the lowest hydrogen evolution rate of 0.171 6 mL/(min·cm2).The optimum comprehensive performance of Al alloy anode is obtained. 展开更多
关键词 Al alloy anode MICROSTRUCTURE electrochemical property anti-corrosion property
下载PDF
Ultrafine nano-scale Cu_(2)Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries 被引量:3
17
作者 Dan Wang Qun Ma +3 位作者 Kang-hui Tian Chan-Qin Duan Zhi-yuan Wang Yan-guo Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1666-1674,共9页
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for... Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications. 展开更多
关键词 copper-antimony alloy anode porous carbon potassium-ion batteries sodium-ion batteries
下载PDF
STUDY ON KINETICS OF OXYGEN EVOLUTION ON LEAD ALLOY ANODES 被引量:1
18
作者 Chen Wenmi Guo Bingkun(Institute of Metallurgical Physicochemistry and New Chemical Materials, Central SouthUniversity of Technology, Changsha 410083, China)Hein Klaus(Institute of Non-ferrous Metallurgy and Purest Materials, Technological University Mini 《Journal of Central South University》 SCIE EI CAS 1997年第1期69-72,共4页
A study was carried out on kinetics of oxygen evolution on lead alloy anodes in sulphuric acidicelectrolyte. The influence of alloy elements Ca, Ag and Sn on the overpotential of oxygen evolution was investigated. All... A study was carried out on kinetics of oxygen evolution on lead alloy anodes in sulphuric acidicelectrolyte. The influence of alloy elements Ca, Ag and Sn on the overpotential of oxygen evolution was investigated. All anodes had been subjected to a pre-polarization before the measurement of potential-currentcurves for oxygen evolution. The overpotential of oxygen evolution was found to be decreased when the alloyanode contained Ca and Ag, whereas it remained unchanged when the alloy anode contained Sn. For oxygenevolution on lead alloy anodes the TAFEL equation was valid. The b vulue for Ph and Ph-Ca anodes was approx. 100, for Ph-Ag, Ph-Ag-Ca anodes it was approx. 140. The a value for Ph Ca, Ph-Ag, Ph-Ag-Ca anodes decreased with the increase of Ca or/and Ag content. The a and b value was not influenced by Sn in theanodes. 展开更多
关键词 OXYGEN EVOLUTION LEAD alloy anode KINETICS
下载PDF
Magnesium alloys as anodes for neutral aqueous magnesium-air batteries 被引量:3
19
作者 Fanglei Tong Shanghai Wei +1 位作者 Xize Chen Wei Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1861-1883,共23页
Magnesium(Mg)is abundant,green and low-cost element.Magnesium-air(Mg-air)battery has been used as disposable lighting power supply,emergency and reserve batteries.It is also one of the potential electrical energy stor... Magnesium(Mg)is abundant,green and low-cost element.Magnesium-air(Mg-air)battery has been used as disposable lighting power supply,emergency and reserve batteries.It is also one of the potential electrical energy storage devices for future electric vehicles(EVs)and portable electronic devices,because of its high theoretical energy density(6.8 k Wh·kg^(-1))and environmental-friendliness.However,the practical application of Mg-air batteries is limited due to the low anodic efficiency of Mg metal anode and sluggish oxygen reduction reaction of air cathode.Mg metal as an anode material is facing two main challenges:high self-corrosion rate and formation of a passivation layer Mg(OH)_(2)which reduces the active surface area.In last decades,a number of Mg alloys,including Mg-Ca,Mg-Zn,commercial Mg-Al-Zn,Mg-Al-Mn,and Mg-Al-Pb alloys,have been studied as anode materials for Mg-air batteries.This article reviews the effect of alloying elements on the battery discharge properties of Mg alloy anodes.The challenges of Mg-air batteries are also discussed,aiming to provide a depth understanding for the theoretical and practical development of high-performance Mg-air batteries. 展开更多
关键词 Metal-air battery Mg anode Mg alloy Battery performance
下载PDF
Stable lithium metal anode enabled by a robust artificial fluorinated hybrid interphase
20
作者 Qiwen Ran Hongyuan Zhao +5 位作者 Jintao Liu Lei Li Qiang Hu Jiangxuan Song Xingquan Liu Sridhar Kormarneni 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期612-621,I0014,共11页
One of the key challenges for achieving stable lithium(Li) metal anode is the construction of the rational solid electrolyte interphase(SEI),but its realization still faces enormous challenges.In this work,a robust ar... One of the key challenges for achieving stable lithium(Li) metal anode is the construction of the rational solid electrolyte interphase(SEI),but its realization still faces enormous challenges.In this work,a robust artificial fluorinated hybrid interphase consisting of lithium-bismuth(Li3Bi) alloy and lithium-fluoride(LiF) was designed to regulate Li deposition without Li dendrite growth.The obtained hybrid interphase showed the high Li+diffusion rate(3.5 × 10^(-4)S cm^(-1)),high electron resistivity(9.04 × 10^(4)Ω cm),and high mechanical strength(1348 MPa),thus enabling the uniform Li deposition at the Li/SEI interface.Specifically,Li3Bi alloy,as a superionic conductor,accelerated the Li+transport and stabilized the hybrid interphase.Meanwhile,LiF was identified as a superior electron-blocker to inhibit the electron tunneling from the Li anode into the SEI.As a result,the modified Li anode showed the stable Li plating/stripping behaviors over 1000 cycles even at 20 mA cm^(-2).Moreover,it also enabled the Li(50 μm)‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(4.4 mA h cm^(-2)) full cell to achieve an average Coulombic efficiency(CE) of 99.6%and a high-capacity retention of 79.2% after 100 cycles,whereas the bare Li anode only exhibited a low-capacity retention of 8.0%.This work sheds light on the internal mechanism of Li+transport within the hybrid interface and provides an effective approach to stabilize the interface of Li metal anode. 展开更多
关键词 Li metal anode Artificial interphase Li Bi alloy LIF Uniform Li deposition
下载PDF
上一页 1 2 101 下一页 到第
使用帮助 返回顶部