b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resi...b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed.展开更多
The tribological behaviours of aluminium-based bearing alloys with different compositions, forged and heat treated materials, were investigated in oil lubricated conditions. Tested materials were Al-8.5Si-3.5Cu and Al...The tribological behaviours of aluminium-based bearing alloys with different compositions, forged and heat treated materials, were investigated in oil lubricated conditions. Tested materials were Al-8.5Si-3.5Cu and Al-15Pb-3.7Cu-1.5Si-1.1Fe. The effects of hardness, heat treatment and forging on wear behaviours of the tested materials were investigated. In forging process, 10%-20%strains were applied. Heat treatment (T6) was performed to the materials. The wear tests of all specimens were performed with a pin-on-disc wear test machine. Forging process increased hardness value of the tested materials. A forging strain of 10%-20%has no significant effect on mass loss.展开更多
In order to study the new anode materials for zinc electrowinning,Al/Pb?0.2%Ag rolled alloy was produced by composite casting and hot rolling.Then the effect of cooling ways on properties of Al/Pb?0.2%Ag rolled alloy ...In order to study the new anode materials for zinc electrowinning,Al/Pb?0.2%Ag rolled alloy was produced by composite casting and hot rolling.Then the effect of cooling ways on properties of Al/Pb?0.2%Ag rolled alloy was investigated.As the results of metallographic test indicated,with the increasing of cooling intensity,both Vickers hardness and yield strength of Al/Pb?0.2%Ag rolled alloy increase.Furthermore,the Al/Pb?0.2%Ag rolled alloy,cooled by ice salt,presents the finest grain size and shows the lowest oxygen evolution potential(1.5902V),while that of alloy cooled by water and air are1.6143V and1.6288V,respectively.However,the corrosion current density and corrosion rate of the Al/Pb?0.2%Ag rolled alloy,cooled by ice salt,are the highest.This can be attributed to its largest specific surface area,which promotes the contact between the anode and electrolyte.展开更多
基金Project(2015JC3004)supported by the Science and Technology Plan of Hunan Province,ChinaProject(2016JJ2147)supported by the Natural Science Foundation of Hunan Province,ChinaProject(51401243)supported by the National Natural Science Foundation of China
文摘b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed.
文摘The tribological behaviours of aluminium-based bearing alloys with different compositions, forged and heat treated materials, were investigated in oil lubricated conditions. Tested materials were Al-8.5Si-3.5Cu and Al-15Pb-3.7Cu-1.5Si-1.1Fe. The effects of hardness, heat treatment and forging on wear behaviours of the tested materials were investigated. In forging process, 10%-20%strains were applied. Heat treatment (T6) was performed to the materials. The wear tests of all specimens were performed with a pin-on-disc wear test machine. Forging process increased hardness value of the tested materials. A forging strain of 10%-20%has no significant effect on mass loss.
基金Projects (YNJJ2016012) supported by the Guangdong Jiana Energy and Technology Co.,Ltd-Central South University Joint Research Funding,China
文摘In order to study the new anode materials for zinc electrowinning,Al/Pb?0.2%Ag rolled alloy was produced by composite casting and hot rolling.Then the effect of cooling ways on properties of Al/Pb?0.2%Ag rolled alloy was investigated.As the results of metallographic test indicated,with the increasing of cooling intensity,both Vickers hardness and yield strength of Al/Pb?0.2%Ag rolled alloy increase.Furthermore,the Al/Pb?0.2%Ag rolled alloy,cooled by ice salt,presents the finest grain size and shows the lowest oxygen evolution potential(1.5902V),while that of alloy cooled by water and air are1.6143V and1.6288V,respectively.However,the corrosion current density and corrosion rate of the Al/Pb?0.2%Ag rolled alloy,cooled by ice salt,are the highest.This can be attributed to its largest specific surface area,which promotes the contact between the anode and electrolyte.