Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applic...Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.展开更多
The flotation properties of single minerals such as diaspore, kaolinite and pyrophllite in bauxites were investigated using RL as collector. The effects of regulators and unavoidable ions on flotation were studied. Ba...The flotation properties of single minerals such as diaspore, kaolinite and pyrophllite in bauxites were investigated using RL as collector. The effects of regulators and unavoidable ions on flotation were studied. Based on the results of single minerals flotation, the separation experiments of mixed minerals and bauxite ore were carried out. The results of closed circuit test on the ore show that, using RL as collector, Na 2CO 3 and (NaPO 3) 6 as modifiers, the grade of Al 2O 3 and SiO 2 are respectively 70.74% and 6.37% in concentrate (Al/Si 11.11), and the recovery of Al 2O 3 can reach 90.52%.展开更多
塑料-金属聚合物复合集流体(metallized plastic current collector,MPCC)通过减厚、减重可大幅提高电池的能量密度,且因聚合物自身绝缘、受热收缩、熔融等特性可提高电池的安全性,因此吸引了产业界研究者的诸多关注。了解聚合物基底和M...塑料-金属聚合物复合集流体(metallized plastic current collector,MPCC)通过减厚、减重可大幅提高电池的能量密度,且因聚合物自身绝缘、受热收缩、熔融等特性可提高电池的安全性,因此吸引了产业界研究者的诸多关注。了解聚合物基底和MPCC的特性及制备方法有利于高质量MPCC的研发,同时可促进高能量密度、高安全电池的发展,因此本文着重介绍了常用和亟待开发的聚合物的特性,阐明了目前市场生产的高质量PET、PP基复合集流体虽已应用于锂离子电池,但面临着各种挑战,例如PET的溶胀溶解反应,PP与金属层间的低黏结性等,并提出了相应的改进措施。此外,本文总结了聚合物表面沉积金属层的多种方法(磁控溅射、蒸镀、化学沉积和电镀等)的原理、优缺点和设备改良策略、注意事项,以期提高聚合物表面金属层的均匀性、一致性和导电率。最后,为提高MPCC在电池中的应用可行性,明确了MPCC未来研发的重点攻关问题,例如提高金属-聚合物界面黏结性,进一步提高电池安全性和导电率,并阐述了将来的发展趋势:功能化和精细化MPCC在电池中的应用。展开更多
The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very ...The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very important to effectively improve the electrochemical performances of the electrode materials. Li4Ti5O12, as a zero-strain material, has been considered as a promising anode material for long life Li-ion batteries. In this study, our results show that the Li4Ti5O12 pasted on Cu or graphite felt current collector exhibits unexpectedly higher rate performance than on A1 current collector. For Li4Ti5O12, the electron transfer between current collector and active material is the critical factor that affects its rate and cycling performances.展开更多
Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple...Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8 B pencil.Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries(KIBs), significantly better than in lithium-ion batteries(LIBs), with capacity retention of 66% for the KIB vs. 28% for the LIB from 0.1 to 0.5 A g^(-1). It also shows a high reversible capacity of ~230 mAh g^(-1) at 0.2 A g^(-1), 75% capacity retention over350 cycles at 0.4 A g^(-1)and the highest rate performance(based on the total electrode weight) among graphite electrodes for K+ storage reported so far.展开更多
In this report, an introduction to the structure of Shanghai EBIT, a brief description of the status ofShanghai EBIT project, and a short discussion of the first results of Shanghai EBIT are presented.
基金the financial support from the National Natural Science Foundation of China (22108044)the 111 Project (B20088)+3 种基金the Fundamental Research Funds for the Central Universities (2572022DJ02)the Research and Development Program in Key Fields of Guangdong Province (2020B1111380002)the Basic Research and Applicable Basic Research in Guangzhou City (202201010290)the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (2021GDKLPRB07)。
文摘Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.
文摘The flotation properties of single minerals such as diaspore, kaolinite and pyrophllite in bauxites were investigated using RL as collector. The effects of regulators and unavoidable ions on flotation were studied. Based on the results of single minerals flotation, the separation experiments of mixed minerals and bauxite ore were carried out. The results of closed circuit test on the ore show that, using RL as collector, Na 2CO 3 and (NaPO 3) 6 as modifiers, the grade of Al 2O 3 and SiO 2 are respectively 70.74% and 6.37% in concentrate (Al/Si 11.11), and the recovery of Al 2O 3 can reach 90.52%.
文摘塑料-金属聚合物复合集流体(metallized plastic current collector,MPCC)通过减厚、减重可大幅提高电池的能量密度,且因聚合物自身绝缘、受热收缩、熔融等特性可提高电池的安全性,因此吸引了产业界研究者的诸多关注。了解聚合物基底和MPCC的特性及制备方法有利于高质量MPCC的研发,同时可促进高能量密度、高安全电池的发展,因此本文着重介绍了常用和亟待开发的聚合物的特性,阐明了目前市场生产的高质量PET、PP基复合集流体虽已应用于锂离子电池,但面临着各种挑战,例如PET的溶胀溶解反应,PP与金属层间的低黏结性等,并提出了相应的改进措施。此外,本文总结了聚合物表面沉积金属层的多种方法(磁控溅射、蒸镀、化学沉积和电镀等)的原理、优缺点和设备改良策略、注意事项,以期提高聚合物表面金属层的均匀性、一致性和导电率。最后,为提高MPCC在电池中的应用可行性,明确了MPCC未来研发的重点攻关问题,例如提高金属-聚合物界面黏结性,进一步提高电池安全性和导电率,并阐述了将来的发展趋势:功能化和精细化MPCC在电池中的应用。
基金supported by the "Hundred Talent Project" of the Chinese Academy of Sciencesthe National High Technology Research and Development Program of China(Grant No.2009AA033101)+3 种基金the National Basic Research Program of China(Grant Nos.2007CB936500 and 2010CB833102)the National Natural Science Foundation of China(Grant No.50972164)the Science and Technology Planning Project of Guangdong Province,China(Grant No.2010A090602001)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KJCX2-YW-W26)
文摘The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very important to effectively improve the electrochemical performances of the electrode materials. Li4Ti5O12, as a zero-strain material, has been considered as a promising anode material for long life Li-ion batteries. In this study, our results show that the Li4Ti5O12 pasted on Cu or graphite felt current collector exhibits unexpectedly higher rate performance than on A1 current collector. For Li4Ti5O12, the electron transfer between current collector and active material is the critical factor that affects its rate and cycling performances.
基金Support from the Australian Research Council through a Discovery project (DP170102406)Future Fellowship project (FT150100109)+1 种基金Auto CRC 2020 (Project 1-117)funded by an Australian Research Council grant (LE0237478)
文摘Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8 B pencil.Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries(KIBs), significantly better than in lithium-ion batteries(LIBs), with capacity retention of 66% for the KIB vs. 28% for the LIB from 0.1 to 0.5 A g^(-1). It also shows a high reversible capacity of ~230 mAh g^(-1) at 0.2 A g^(-1), 75% capacity retention over350 cycles at 0.4 A g^(-1)and the highest rate performance(based on the total electrode weight) among graphite electrodes for K+ storage reported so far.
文摘In this report, an introduction to the structure of Shanghai EBIT, a brief description of the status ofShanghai EBIT project, and a short discussion of the first results of Shanghai EBIT are presented.