Mitigative effect of La on Glycine max seedlings under combined Pb and Cd pollution was studied through pot culture experiment. The results show that the growth and metabolism of Glycine max seedlings are inhibited by...Mitigative effect of La on Glycine max seedlings under combined Pb and Cd pollution was studied through pot culture experiment. The results show that the growth and metabolism of Glycine max seedlings are inhibited by the solution with 500 mg.L-1 Pb + 100 mg.L-1 Cd. When 30 mg. L-1 LaCl3 is used to spray Glycine max seedlings once, the injury effect of combined Pb and Cd pollution is reduced. The experiment proves that the effect is related to La which can raise photosynthetic rate, chlorophyll content and activity of nitrate reductase, and reduce cell membrane permeability, content of Pb and Cd, and keep TTC reduction ability of Glycine max seedling.展开更多
By means of both pot and field tests,this paper studied the contents of Cd,Pb,Cu,Zn and As and their ecological effects on plant-soil system.in tissues of crops and soil microorganisms.It was found that there exist sy...By means of both pot and field tests,this paper studied the contents of Cd,Pb,Cu,Zn and As and their ecological effects on plant-soil system.in tissues of crops and soil microorganisms.It was found that there exist synergistic effect among these five elements,especially for Cd in combination.The reclaniation of soil polluted by these elements in combination is rather difficult to be carried out.The distinctive ecological and chemical behaviors between Cd and As make various reclamation measures less applicable,and thus,further research measures are necessary.展开更多
The public health and ecological impacts of volatile organic compound(VOCs) pollution have become a serious problem in China,arousing increasing attention to emissions control.In this context,this paper analyses the e...The public health and ecological impacts of volatile organic compound(VOCs) pollution have become a serious problem in China,arousing increasing attention to emissions control.In this context,this paper analyses the effectiveness of VOC reduction policies,namely pollution charges and environmental taxes at the national and industrial sector levels.It uses a computable general equilibrium model,which connects macroeconomic variables with VOC emissions inventory,to simulate the effects of policy scenarios(with 2007 as the reference year).This paper shows that VOC emissions are reduced by 2.2% when a pollution charge equal to the average cost of engineering reduction methods-the traditional approach to regulation in China-is applied.In order to achieve a similar reduction,an 8.9% indirect tax would have to be imposed.It concludes that an environmental tax should be the preferred method of VOC regulation due to its smaller footprint on the macroeconomy.Other policies,such as subsidies,should be used as supplements.展开更多
It has become general for surface waters being polluted by micro organic compounds. In order to know the current pollution situation and the properties of micro organic compounds in the Changjiang River, a test was pe...It has become general for surface waters being polluted by micro organic compounds. In order to know the current pollution situation and the properties of micro organic compounds in the Changjiang River, a test was performed on micro organic compounds in the water, bottom material and fish bodies which were sampled from major city river reaches of the Changjiang River. Based on the test result, researchers described and analyzed the sorts, concentration level and distribution features of micro organic compounds. A comprehensive evaluation was conducted by adopting the method of MEG (Multimedia Environmental Goals). The study indicated that ① the water body of major city river reaches of the Changjiang River has been generally polluted. In the test, totally 12 types with 308 kinds of organic compounds were detected. The main pollutants were paraffins, PAHs and lipids; and ② micro organic pollutant content in fish bodies was generally higher than that in bottom material which is in turn higher than that in water; and ③ pollution is relatively severe in the river reaches of mid-to-large comprehensive industrial cities with fairly great TAS (Total Ambient Severity) of public health and ecological system.展开更多
Heavy metal pollution in soil-plant system is of major environmental concern on a world scale and in China in particular with the rapid development of industry. The heavy metal pollution status in soil-plant system in...Heavy metal pollution in soil-plant system is of major environmental concern on a world scale and in China in particular with the rapid development of industry. The heavy metal pollution status in soil-plant system in China, the research progress on the bioavailability of heavy metals (affecting factors, extraction methods, free-ion activity model, adsorption model, multivariate regression model, Q-I relationship, and compound pollution), and soil remediation are reviewed in the paper. Future research and monitoring is also discussed.展开更多
Objective The study was designed to compare the combustion products of coal gas, liquefied petroleum gas and natural gas in relation to indoor air pollution. Methods Regular pollutants including B(a)P were monitored a...Objective The study was designed to compare the combustion products of coal gas, liquefied petroleum gas and natural gas in relation to indoor air pollution. Methods Regular pollutants including B(a)P were monitored and 1-hydroxy pyrene were tested in urine of the enrolled subjects. Radon concentrations and their changes in four seasons were also monitored in the city natural gas from its source plant and transfer stations to final users. To analyze organic components of coal gas, liquefied petroleum gas and natural gas, a high-flow sampling device specially designed was used to collect their combustion products, and semi-volatile organic compounds contained in the particles were detected by gas chromatograph-mass spectrograph (GC/MS). Results Findings in the study showed that the regular indoor air pollutants particles and CO were all above the standard in winter when heating facilities were operated in the city, but they were lowest in kitchens using natural gas; furthermore, although NO2 and CO2 were slightly higher in natural gas, B(a)P concentration was lower in this group and 1-hydroxy pyrene was lowest in urine of the subjects exposed to natural gas. Organic compounds were more complicated in coal gas and liquefied petroleum gas than in natural gas. The concentration of radon in natural gas accounted for less than 1‰ of its effective dose contributing to indoor air pollution in Beijing households. Conclusion Compared to traditional fuels, gases are deemed as clean ones, and natural gas is shown to be cleaner than the other two gases.展开更多
Mercury pollution in the Three Gorges Reservoir area of P.R.China merits special attention.We investigated into the current situation in the Chongqing part of the Reservoir area,identified the pollution sources and pr...Mercury pollution in the Three Gorges Reservoir area of P.R.China merits special attention.We investigated into the current situation in the Chongqing part of the Reservoir area,identified the pollution sources and proposed some suggestions for the remediation and prevention of mercury pollution in this area.Atmospheric mercury in Chongqing was mainly from coal burning and releases of mercury-containing products such as various types of lights and fever thermometers.Urban drainage in Chongqing and Changshou,and runoffs from the high mercury background area in the lower reaches of the Wujiang River contributed most of the mercury in the water of the Yangtze River.A majority of the blame should be laid on mercury and gold mining in the Wujiang valley.We suggested foresting sloping lands to relieve soil erosion and prevent mercury-bearing soil from running into rivers,educational activities to discourage use of mercury-containing products and improved infrastructure to collect mercury-containing wastes for reducing mercury releases,more facilities for treating wastewater and solid waste to accommodate increased requirements of discharge,and growing selected perennial plants in mercury-contaminated land to absorb the mercury in soil.We also suggested concerted operation of a dedicated water-quality monitoring system,reinforced legislation and an effective administrative mechanism to ensure lasting efforts are invested in curbing mercury releases and restoring mercury contaminated land and water in the Reservoir area.展开更多
Heavy metals—Pb and Cr are important causes of environmental pollution, and they often coexist in nature. At present, the effects of Pb and Cr toxicity on soil microorganisms have been less studied, in soil environme...Heavy metals—Pb and Cr are important causes of environmental pollution, and they often coexist in nature. At present, the effects of Pb and Cr toxicity on soil microorganisms have been less studied, in soil environment which is extremely complex. Simulating soil environment and studying microbial reaction under various heavy metal conditions are of great significance for revealing microbial tolerance to heavy metals. In this paper, firstly, the related concepts of soil rechecking pollution are discussed, and the physical and chemical properties and forms of lead and chromium are introduced accordingly. Secondly, the effects of combined pollution of lead and chromium on soil microbial biomass, soil microbial community structure and soil microbial activity were discussed. Finally, the relevant treatment methods of heavy metal contaminated soil were put forward.展开更多
In recent years,the issue of PM_(2.5)-O_(3)compound pollution has become a significant global environmental concern.This study examines the spatial and temporal patterns of global PM_(2.5)-O_(3)compound pollution and ...In recent years,the issue of PM_(2.5)-O_(3)compound pollution has become a significant global environmental concern.This study examines the spatial and temporal patterns of global PM_(2.5)-O_(3)compound pollution and exposure risks,firstly at the global and urban scale,using spatial statistical regression,exposure risk assessment,and trend analyses based on the datasets of daily PM_(2.5)and surface O_(3)concentrations monitored in 120 cities around the world from 2019 to 2022.Additionally,on the basis of the common emission sources,spatial heterogeneity,interacting chemical mechanisms,and synergistic exposure risk levels between PM_(2.5)and O_(3)pollution,we proposed a synergistic PM_(2.5)-O_(3)control framework for the joint control of PM_(2.5)and O3.The results indicated that:(1)Nearly 50%of cities worldwide were affected by PM_(2.5)-O_(3)compound pollution,with China,South Korea,Japan,and India being the global hotspots for PM2.5-O3 compound pollution;(2)Cities with PM_(2.5)-O_(3)compound pollution have exposure risk levels dominated by ST t ST(Stabilization)and ST t HR(High Risk).Exposure risk levels of compound pollution in developing countries are significantly higher than those in developed countries,with unequal exposure characteristics;(3)The selected cities showed significant positive spatial correlations between PM_(2.5)and O_(3)concentrations,which were consistent with the spatial distribution of the precursors NOx and VOCs;(4)During the study period,52.5%of cities worldwide achieved synergistic reductions in annual average PM_(2.5)and O_(3)concentrations.The average PM_(2.5)concentration in these cities decreased by 13.97%,while the average O_(3)concentration decreased by 19.18%.This new solution offers the opportunity to construct intelligent and healthy cities in the upcoming low–carbon transition.展开更多
Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
The biopharmaceutical industry contributes substantially to volatile organic compounds(VOCs)emissions,causing growing concerns and social developmental conflicts.This study conducted an on-site investigation of the pr...The biopharmaceutical industry contributes substantially to volatile organic compounds(VOCs)emissions,causing growing concerns and social developmental conflicts.This study conducted an on-site investigation of the process-based emission of VOCs from three biopharmaceutical enterprises.In the workshops of the three enterprises,26 VOCs were detected,which could be sorted into 4 classes:hydrocarbons,aromatic hydrocarbons,oxygen-containing compounds,and nitrogen-containing compounds.Ketones were the main components of waste gases,accounting for 44.13%-77.85%of the overall VOCs.Process-based source profiles were compiled for each process unit,with the fermentation and extraction units of tiamulin fumarate being the main source of VOC emissions.Dimethyl heptanone,vinyl acetate,diethylamine,propylene glycol methyl ether(PGME),and benzene were screened as priority pollutants through a fuzzy comprehensive evaluation system.Ground level concentration simulation results of the Gauss plume diffusion model demonstrated that the diffusivity of VOCs in the atmosphere was relatively high,indicating potential non-carcinogenic and carcinogenic risks 1.5-2 km downwind.Furthermore,the process-based formation potentials of ozone and secondary organic aerosols(SOAs)were determined and indicated that N-methyl-2-pyrrolidone,dimethyl heptanone,and PGME should be preferentially controlled to reduce the ozone formation potential,whereas the control of benzene and chlorobenzene should be prioritized to reduce the generation of SOAs.Our results provide a basis for understanding the characteristics of VOC emission by biopharmaceutical industries and their diffusion,potentially allowing the development of measures to reduce health risks and secondary pollution.展开更多
文摘Mitigative effect of La on Glycine max seedlings under combined Pb and Cd pollution was studied through pot culture experiment. The results show that the growth and metabolism of Glycine max seedlings are inhibited by the solution with 500 mg.L-1 Pb + 100 mg.L-1 Cd. When 30 mg. L-1 LaCl3 is used to spray Glycine max seedlings once, the injury effect of combined Pb and Cd pollution is reduced. The experiment proves that the effect is related to La which can raise photosynthetic rate, chlorophyll content and activity of nitrate reductase, and reduce cell membrane permeability, content of Pb and Cd, and keep TTC reduction ability of Glycine max seedling.
文摘By means of both pot and field tests,this paper studied the contents of Cd,Pb,Cu,Zn and As and their ecological effects on plant-soil system.in tissues of crops and soil microorganisms.It was found that there exist synergistic effect among these five elements,especially for Cd in combination.The reclaniation of soil polluted by these elements in combination is rather difficult to be carried out.The distinctive ecological and chemical behaviors between Cd and As make various reclamation measures less applicable,and thus,further research measures are necessary.
基金supported by the National Basic Research Program(973 Program)of China:[Grant Number2012CB955800]the National Natural Science Foundation(863 Program)of China:[Grant Number 2012 AA063101]the "Strategic Priority Research Program" of the Chinese Academy of Sciences[Grant Number XDB05050200]
文摘The public health and ecological impacts of volatile organic compound(VOCs) pollution have become a serious problem in China,arousing increasing attention to emissions control.In this context,this paper analyses the effectiveness of VOC reduction policies,namely pollution charges and environmental taxes at the national and industrial sector levels.It uses a computable general equilibrium model,which connects macroeconomic variables with VOC emissions inventory,to simulate the effects of policy scenarios(with 2007 as the reference year).This paper shows that VOC emissions are reduced by 2.2% when a pollution charge equal to the average cost of engineering reduction methods-the traditional approach to regulation in China-is applied.In order to achieve a similar reduction,an 8.9% indirect tax would have to be imposed.It concludes that an environmental tax should be the preferred method of VOC regulation due to its smaller footprint on the macroeconomy.Other policies,such as subsidies,should be used as supplements.
文摘It has become general for surface waters being polluted by micro organic compounds. In order to know the current pollution situation and the properties of micro organic compounds in the Changjiang River, a test was performed on micro organic compounds in the water, bottom material and fish bodies which were sampled from major city river reaches of the Changjiang River. Based on the test result, researchers described and analyzed the sorts, concentration level and distribution features of micro organic compounds. A comprehensive evaluation was conducted by adopting the method of MEG (Multimedia Environmental Goals). The study indicated that ① the water body of major city river reaches of the Changjiang River has been generally polluted. In the test, totally 12 types with 308 kinds of organic compounds were detected. The main pollutants were paraffins, PAHs and lipids; and ② micro organic pollutant content in fish bodies was generally higher than that in bottom material which is in turn higher than that in water; and ③ pollution is relatively severe in the river reaches of mid-to-large comprehensive industrial cities with fairly great TAS (Total Ambient Severity) of public health and ecological system.
文摘Heavy metal pollution in soil-plant system is of major environmental concern on a world scale and in China in particular with the rapid development of industry. The heavy metal pollution status in soil-plant system in China, the research progress on the bioavailability of heavy metals (affecting factors, extraction methods, free-ion activity model, adsorption model, multivariate regression model, Q-I relationship, and compound pollution), and soil remediation are reviewed in the paper. Future research and monitoring is also discussed.
文摘Objective The study was designed to compare the combustion products of coal gas, liquefied petroleum gas and natural gas in relation to indoor air pollution. Methods Regular pollutants including B(a)P were monitored and 1-hydroxy pyrene were tested in urine of the enrolled subjects. Radon concentrations and their changes in four seasons were also monitored in the city natural gas from its source plant and transfer stations to final users. To analyze organic components of coal gas, liquefied petroleum gas and natural gas, a high-flow sampling device specially designed was used to collect their combustion products, and semi-volatile organic compounds contained in the particles were detected by gas chromatograph-mass spectrograph (GC/MS). Results Findings in the study showed that the regular indoor air pollutants particles and CO were all above the standard in winter when heating facilities were operated in the city, but they were lowest in kitchens using natural gas; furthermore, although NO2 and CO2 were slightly higher in natural gas, B(a)P concentration was lower in this group and 1-hydroxy pyrene was lowest in urine of the subjects exposed to natural gas. Organic compounds were more complicated in coal gas and liquefied petroleum gas than in natural gas. The concentration of radon in natural gas accounted for less than 1‰ of its effective dose contributing to indoor air pollution in Beijing households. Conclusion Compared to traditional fuels, gases are deemed as clean ones, and natural gas is shown to be cleaner than the other two gases.
基金the Natural Science Foundation of China under the Grant No.20377054
文摘Mercury pollution in the Three Gorges Reservoir area of P.R.China merits special attention.We investigated into the current situation in the Chongqing part of the Reservoir area,identified the pollution sources and proposed some suggestions for the remediation and prevention of mercury pollution in this area.Atmospheric mercury in Chongqing was mainly from coal burning and releases of mercury-containing products such as various types of lights and fever thermometers.Urban drainage in Chongqing and Changshou,and runoffs from the high mercury background area in the lower reaches of the Wujiang River contributed most of the mercury in the water of the Yangtze River.A majority of the blame should be laid on mercury and gold mining in the Wujiang valley.We suggested foresting sloping lands to relieve soil erosion and prevent mercury-bearing soil from running into rivers,educational activities to discourage use of mercury-containing products and improved infrastructure to collect mercury-containing wastes for reducing mercury releases,more facilities for treating wastewater and solid waste to accommodate increased requirements of discharge,and growing selected perennial plants in mercury-contaminated land to absorb the mercury in soil.We also suggested concerted operation of a dedicated water-quality monitoring system,reinforced legislation and an effective administrative mechanism to ensure lasting efforts are invested in curbing mercury releases and restoring mercury contaminated land and water in the Reservoir area.
文摘Heavy metals—Pb and Cr are important causes of environmental pollution, and they often coexist in nature. At present, the effects of Pb and Cr toxicity on soil microorganisms have been less studied, in soil environment which is extremely complex. Simulating soil environment and studying microbial reaction under various heavy metal conditions are of great significance for revealing microbial tolerance to heavy metals. In this paper, firstly, the related concepts of soil rechecking pollution are discussed, and the physical and chemical properties and forms of lead and chromium are introduced accordingly. Secondly, the effects of combined pollution of lead and chromium on soil microbial biomass, soil microbial community structure and soil microbial activity were discussed. Finally, the relevant treatment methods of heavy metal contaminated soil were put forward.
文摘In recent years,the issue of PM_(2.5)-O_(3)compound pollution has become a significant global environmental concern.This study examines the spatial and temporal patterns of global PM_(2.5)-O_(3)compound pollution and exposure risks,firstly at the global and urban scale,using spatial statistical regression,exposure risk assessment,and trend analyses based on the datasets of daily PM_(2.5)and surface O_(3)concentrations monitored in 120 cities around the world from 2019 to 2022.Additionally,on the basis of the common emission sources,spatial heterogeneity,interacting chemical mechanisms,and synergistic exposure risk levels between PM_(2.5)and O_(3)pollution,we proposed a synergistic PM_(2.5)-O_(3)control framework for the joint control of PM_(2.5)and O3.The results indicated that:(1)Nearly 50%of cities worldwide were affected by PM_(2.5)-O_(3)compound pollution,with China,South Korea,Japan,and India being the global hotspots for PM2.5-O3 compound pollution;(2)Cities with PM_(2.5)-O_(3)compound pollution have exposure risk levels dominated by ST t ST(Stabilization)and ST t HR(High Risk).Exposure risk levels of compound pollution in developing countries are significantly higher than those in developed countries,with unequal exposure characteristics;(3)The selected cities showed significant positive spatial correlations between PM_(2.5)and O_(3)concentrations,which were consistent with the spatial distribution of the precursors NOx and VOCs;(4)During the study period,52.5%of cities worldwide achieved synergistic reductions in annual average PM_(2.5)and O_(3)concentrations.The average PM_(2.5)concentration in these cities decreased by 13.97%,while the average O_(3)concentration decreased by 19.18%.This new solution offers the opportunity to construct intelligent and healthy cities in the upcoming low–carbon transition.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.
基金financially supported by the National Natural Science Foundation of China (No.51878650)。
文摘The biopharmaceutical industry contributes substantially to volatile organic compounds(VOCs)emissions,causing growing concerns and social developmental conflicts.This study conducted an on-site investigation of the process-based emission of VOCs from three biopharmaceutical enterprises.In the workshops of the three enterprises,26 VOCs were detected,which could be sorted into 4 classes:hydrocarbons,aromatic hydrocarbons,oxygen-containing compounds,and nitrogen-containing compounds.Ketones were the main components of waste gases,accounting for 44.13%-77.85%of the overall VOCs.Process-based source profiles were compiled for each process unit,with the fermentation and extraction units of tiamulin fumarate being the main source of VOC emissions.Dimethyl heptanone,vinyl acetate,diethylamine,propylene glycol methyl ether(PGME),and benzene were screened as priority pollutants through a fuzzy comprehensive evaluation system.Ground level concentration simulation results of the Gauss plume diffusion model demonstrated that the diffusivity of VOCs in the atmosphere was relatively high,indicating potential non-carcinogenic and carcinogenic risks 1.5-2 km downwind.Furthermore,the process-based formation potentials of ozone and secondary organic aerosols(SOAs)were determined and indicated that N-methyl-2-pyrrolidone,dimethyl heptanone,and PGME should be preferentially controlled to reduce the ozone formation potential,whereas the control of benzene and chlorobenzene should be prioritized to reduce the generation of SOAs.Our results provide a basis for understanding the characteristics of VOC emission by biopharmaceutical industries and their diffusion,potentially allowing the development of measures to reduce health risks and secondary pollution.