期刊文献+
共找到920篇文章
< 1 2 46 >
每页显示 20 50 100
Preparation and Characterization of Cerium Doped Ti/SnO_2-Mn_2O_3/PbO_2 Electrode 被引量:1
1
作者 梁镇海 王荣鹏 樊彩梅 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期91-96,共6页
The acid-proof anode Ti/SnO2+Mn2O3/PbO2 doped with Ce was prepared by thermal decomposition and electrodeposition combination technology, the effect of Ce on the morphology and structure of anode was also studied in t... The acid-proof anode Ti/SnO2+Mn2O3/PbO2 doped with Ce was prepared by thermal decomposition and electrodeposition combination technology, the effect of Ce on the morphology and structure of anode was also studied in this paper. The results obtained by cyclic voltammetry (CV), electrochemical impedance spectroscopic (EIS), X-ray Diffraction (XRD) and scanning electron microscopy (SEM) indicated that PbO2 crystal grains presented honeycomb structure were formed on the electrode surface by doping with Ce. The specific surface areas and catalytic active sites of the Ce-PbO2 doped electrode were increased and the catalytic activity was evidently greater than the undoped one. However, when Ce was doped into the intermediate layer (SnO2+Mn2O3), a more cracked surface structure formed, thus leading electrode deactivation by passivation of the Ti-substrate. So the anodic stability was decreased according to the accelerated life tests. 展开更多
关键词 Cerium doping Ti/SnO_2-Mn_2O_3/PbO_2 electrocatalytic activity rare earths
下载PDF
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
2
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS Membrane electrode assembly
下载PDF
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
3
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
Interface and energy band manipulation of Bi2O3-Bi2S3 electrode enabling advanced magnesium-ion storage
4
作者 Qiang Tang Yingze Song +4 位作者 Xuan Cao Cheng Yang Dong Wang Tingting Qin Wei Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3543-3552,共10页
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi... Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems. 展开更多
关键词 Magnesium-ion battery Bi2O3-Bi2S3 heterostructure Interface and energy band engineering Electrochemical reaction kinetics electrode integrity
下载PDF
High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti_(3)C_(2)T_(x) MXene-Based Composite Electrode
5
作者 Zhongming Chen Zhijian Du +3 位作者 La Li Kai Jiang Di Chen Guozhen Shen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期367-377,共11页
Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics.However,the low Seebeck coefficient and heat-... Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics.However,the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application.In this paper,we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn_(2)O_(4)@Ti_(3)C_(2)T_(x)MXene composites(ZMO@Ti_(3)C_(2)T_(x) MXene)electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte,which realized the thermoelectric conversion and electrical energy storage at the same time.This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K^(−1),thermal voltage of 243 mV,and outstanding heat-to-electricity conversion efficiency of up to 6.48%at the temperature difference of 4.4 K.In addition,this device showed excellent charge–discharge cycling stability at high-temperature differences(3 K)and low-temperature differences(1 K),respectively.Connecting two thermally chargeable supercapacitor units in series,the generated output voltage of 500 mV further confirmed the stability of devices.When a single device was worn on the arm,a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics. 展开更多
关键词 ionogel electrode Soret effect thermally chargeable supercapacitor Ti_(3)C_(2)T_(x)MXene UIO-66 MOF
下载PDF
Influence of nano-CeO_2 on coating structure and properties of electrodeposited Al/α-PbO_2/β-PbO_2 被引量:4
6
作者 陈阵 余强 +2 位作者 廖登辉 郭忠诚 武剑 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1382-1389,共8页
Al/α-PbO2/β-PbO2 composite electrodes doped with rare earth oxide (CeO2) were prepared by anodic oxidation method investigate the influence of nano-CeO2 dopants on the properties of Al/α-PbO2/β-PbO2-CeO2 electro... Al/α-PbO2/β-PbO2 composite electrodes doped with rare earth oxide (CeO2) were prepared by anodic oxidation method investigate the influence of nano-CeO2 dopants on the properties of Al/α-PbO2/β-PbO2-CeO2 electrodes and the impact of α-PbO2 as the intermediate layer. The results show that using α-PbO2 as the intermediate layer will benefit the crystallization of β-PbO2 and β-PbO2 is more suitable as the surface layer than α-PbO2. CeO2 dopants change the crystallite size and crystal structure, enhance the catalytic activity, and even change the deposition mechanism of PbO2. The doping of CeO2 in the PbO2 electrodes can enhance the electro-catalytic activity, which is helpful for oxygen evolution, and therefore reduce the cell voltage. 展开更多
关键词 rare earth CEO2 composite electrode material α-PbO2 β-PbO2 cell voltage inert anode
下载PDF
Effects of current density on preparation and performance of Al/conductive coating/α-PbO_2-Ce O_2-TiO_2/β-Pb O_2-MnO_2-WC-ZrO_2 composite electrode materials 被引量:1
7
作者 杨海涛 陈步明 +5 位作者 郭忠诚 刘焕荣 张永春 黄惠 徐瑞东 付仁春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3394-3404,共11页
Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique... Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique. The effects of current density on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated by energy dispersive X-ray spectroscopy(EDXS), anode polarization curves, quasi-stationary polarization(Tafel) curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). Results reveal that the composite electrode obtained at 1 A/dm2 possesses the lowest overpotential(0.610 V at 500 A/m2) for oxygen evolution, the best electrocatalytic activity, the longest service life(360 h at 40 °C in 150 g/L H2SO4 solution under 2 A/cm2), and the lowest cell voltage(2.75 V at 500 A/m2). Furthermore, with increasing current density, the coating exhibits grain growth and the decrease of content of Mn O2. Only a slight effect on crystalline structure is observed. 展开更多
关键词 composite electrode material A1 substrate β-PbO2-MnO2-WC-ZrO2 electrochemical co-deposition current density
下载PDF
Photoelectrochemical degradation of Methylene Blue with β-PbO_2 electrodes driven by visible light irradiation 被引量:4
8
作者 Guoting Li HoYin Yip +3 位作者 Kin Hang Wong Chun Hu Jiuhui Qu Po Keung Wong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第6期998-1003,共6页
β-PbO2 electrodes were prepared by electro-deposition and characterized by scanning electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,and linear sweep voltammetry.We confirmed pure β-PbO2 crysta... β-PbO2 electrodes were prepared by electro-deposition and characterized by scanning electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,and linear sweep voltammetry.We confirmed pure β-PbO2 crystals were on the electrode and it had a high oxygen evolution potential.The photoactivity and photoelectrochemical(PEC) properties of the β-PbO2 electrode were investigated under visible light irradiation(λ 〉 420 nm) for the decolorization of Methylene Blue.Pseudo first-order kinetics parameter(Kapp) for dye decolorization using the β-PbO2 electrode achieved 6.71×10-4 min-1 under visible light irradiation,which indicated its excellent visible light-induced photoactivity.The Kapp of the PEC process was as much as 1.41×10-3 min-1 and was 1.71 times that of visible light irradiation or electrolysis even in the presence of the β-PbO2 electrode.A significant synergetic effect was observed in the PEC system.We also employed TiO2 modified β-PbO2 electrodes in this test,which revealed that the TiO2 immobilized on the β-PbO2 electrode inhibited the visible light-induced PEC efficiency despite the amount of TiO2 used for electrode preparation.The β-PbO2 electrode was also superior to the dimensionally stable anode(Ti/Ru0.3Ti0.7O2) in visible light-induced photoactivity and PEC efficiency. 展开更多
关键词 PHOTOCATALYSIS photoelectrochemical process visible light β-PbO2 electrode
原文传递
Preparation of the Ag_2O_2-PbO_2 Modified Electrode and Its Application towards Escherichia coli Fast Counting in Water 被引量:3
9
作者 JingGU WenZHANG +3 位作者 YuFengYANG LeiZHENG ZiRongWU LiTongJIN 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第5期635-638,共4页
A novel nano crystalline Ag2O2-PbO2 film chemically modified electrode (CME) was prepared and the CME was characterized by X-ray diffractometer (XRD) and atomic force microscope (AFM). By chronoamperometry, the nano A... A novel nano crystalline Ag2O2-PbO2 film chemically modified electrode (CME) was prepared and the CME was characterized by X-ray diffractometer (XRD) and atomic force microscope (AFM). By chronoamperometry, the nano Ag2O2-PbO2 CME was used as bioelectro- chemical sensor to determine the population of Escherichia coli (E. coli) in water. Compared with conventional methods, it is found that the technique we used is fast and convenient in counting E. coli. 展开更多
关键词 Ag2O2-PbO2 modified platinum electrode Escherichia coli fast counting.
下载PDF
LiTFSI salt concentration effect to digest lithium polysulfides for high-loading sulfur electrodes 被引量:1
10
作者 Jin-Kwang Song Moonsoo Kim +1 位作者 Seongbae Park Young-Jun Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期574-581,I0015,共9页
Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trode... Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trodes and low electrolyte/sulfur(E/S)ratios.The sluggish reaction in the low E/S ratio induces poor LiPS solubility and unstable Li_(2)S electrodeposition,resulting in limited sulfur utilization,especially under high-loading sulfur electrode.In this study,we report on salt concentration effects that improve sulfur utilization with a high-loading cathode(6 mgs ulfurcm^(-2)),a high sulfur content(80 wt%)and a low E/S ratio(5 m L gs ulfur^(-1)).On the basis of the rapid LiPS dissolving in a low concentration electrolyte,we estab-lished that the quantity of Li_(2)S electrodeposition from a high Li+diffusion coefficient,referring to the reduction of LiPS precipitation,was significantly enhanced by a faster kinetic.These results demonstrate the importance of kinetic factors for the rate capability and cycle life stability of Li-S battery electrolytes through high Li_(2)S deposition under high-loading sulfur electrode. 展开更多
关键词 Lithium-sulfur battery Electrolyte concentration Li2S deposition High-loading sulfur electrode
下载PDF
Computational design of promising 2D electrode materials for Li-ion and Li–S battery applications 被引量:1
11
作者 Ke Fan Yuen Hong Tsang Haitao Huang 《Materials Reports(Energy)》 2023年第3期1-23,共23页
Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode m... Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode materials for overcoming the bottlenecks of LIBs and Li–S batteries(such as low diffusion rates in LIBs and low sulfur utilization in Li–S batteries)remain the greatest challenge,while two-dimensional(2D)electrodes materials provide a solution because of their unique structural and electrochemical properties.In this article,from the perspective of ab-initio simulations,we review the design of 2D electrode materials for LIBs and Li–S batteries.We first propose the theoretical design principles for 2D electrodes,including stability,electronic properties,capacity,and ion diffusion descriptors.Next,classified examples of promising 2D electrodes designed by theoretical simulations are given,covering graphene,phosphorene,MXene,transition metal sulfides,and so on.Finally,common challenges and a future perspective are provided.This review paves the way for rational design of 2D electrode materials for LIBs and Li–S battery applications and may provide a guide for future experiments. 展开更多
关键词 Lithium-ion batteries Lithium-sulfur batteries 2D electrode materials Computational design
下载PDF
Peptide self‐assembly as a strategy for facile immobilization of redox enzymes on carbon electrodes
12
作者 Itzhak Grinberg Oren Ben‐Zvi +1 位作者 Lihi Adler‐Abramovich Iftach Yacoby 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期15-30,共16页
Redox-enzyme‐mediated electrochemical processes such as hydrogen production,nitrogen fixation,and CO_(2) reduction are at the forefront of the green chemistry revolution.To scale up,the inefficient two‐dimensional(2... Redox-enzyme‐mediated electrochemical processes such as hydrogen production,nitrogen fixation,and CO_(2) reduction are at the forefront of the green chemistry revolution.To scale up,the inefficient two‐dimensional(2D)immobilization of redox enzymes on working electrodes must be replaced by an efficient dense 3D system.Fabrication of 3D electrodes was demonstrated by embedding enzymes in polymer matrices.However,several requirements,such as simple immobilization,prolonged stability,and resistance to enzyme leakage,still need to be addressed.The study presented here aims to overcome these gaps by immobilizing enzymes in a supramolecular hydrogel formed by the self‐assembly of the peptide hydrogelator fluorenylmethyloxycarbonyldiphenylalanine.Harnessing the self‐assembly process avoids the need for tedious and potentially harmful chemistry,allowing the rapid loading of enzymes on a 3D electrode under mild conditions.Using the[FeFe]hydrogenase enzyme,high enzyme loads,prolonged resistance against electrophoresis,and highly efficient hydrogen production are demonstrated.Further,this enzyme retention is shown to arise from its interaction with the peptide nanofibrils.Finally,this method is successfully used to retain other redox enzymes,paving the way for a variety of enzyme‐mediated electrochemical applications. 展开更多
关键词 3D electrode enzymes encapsulation H2 production HYDROGENASE peptide hydrogel
下载PDF
Photoelectrochemical CO_(2) electrolyzers: From photoelectrode fabrication to reactor configuration
13
作者 Jose Antonio Abarca Guillermo Díaz-Sainz +2 位作者 Ivan Merino-Garcia Angel Irabien Jonathan Albo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期455-480,I0012,共27页
The photoelectrochemical conversion of CO_(2) into value-added products emerges as an attractive approach to alleviate climate change. One of the main challenges in deploying this technology is, however, the developme... The photoelectrochemical conversion of CO_(2) into value-added products emerges as an attractive approach to alleviate climate change. One of the main challenges in deploying this technology is, however, the development and optimization of(photo)electrodes and photoelectrolyzers. This review focuses on the fabrication processes, structure, and characterization of(photo)electrodes, covering a wide range of fabrication techniques, from rudimentary to automated fabrication processes. The work also highlights the most relevant features of(photo)electrodes, with special emphasis on how to measure and optimize them. Finally, the review analyses the integration of(photo)electrodes in different photoelectrolyzer architectures, analyzing the most recent research work that comprises photocathode, photoanode,photocathode-photoanode, and tandem photoelectrolyzer configurations to ideally achieve self-sustained CO_(2) conversion systems. Overall, comprehensive guidelines are provided for future advancements in developing effective devices for CO_(2) conversion, bridging the gap towards the use of sunlight as the unique energy input and practical applications. 展开更多
关键词 Decarbonization CO_(2)photoelectroreduction (Photo)electrodes Fabrication techniques Photoelectrolyzer configuration
下载PDF
A facile finger-paint physical modification for bilateral electrode/electrolyte interface towards a stable aqueous Zn battery
14
作者 Hang Yang Duo Chen +6 位作者 Yicheng Tan Hao Xu Li Li Yiming Zhang Chenglin Miao Guangshe Li Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期101-109,I0004,共10页
Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint met... Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint method is proposed to enable quick physical modification of glass-fiber separator without complicated chemical technology to modulate EEI of bilateral electrodes for aqueous zinc-ion batteries(ZIBs).An elaborate biochar derived from Aspergillus Niger is exploited as the modification agent of EEI,in which the multi-functional groups assist to accelerate Zn^(2+)desolvation and create a hydrophobic environment to homogenize the deposition behavior of Zn anode.Importantly,the finger-paint interface on separator can effectively protect cathodes from abnormal capacity fluctuation and/or rapid attenuation induced by H_(2)O molecular on the interface,which is demonstrated in modified MnO_(2),V_(2)O_(5),and KMn HCF-based cells.The as-proposed finger-paint method opens a new idea of bilateral interface engineering to facilitate the access to the practical application of the stable zinc electrochemistry. 展开更多
关键词 Aqueous Zinc battery electrode/electrolyte interface Interface modification MnO_(2) V_(2)O_(5) KMnHCF
下载PDF
Preparation of B_(2)O_(3)-ZnO-SiO_(2)Glass and Sintering Densification of Copper Terminal Electrode Applied in Multilayer Ceramic Capacitors
15
作者 YUE Yi LI Hong +6 位作者 CAO Xiuhua ZHANG Xuehui HUANG Jun HUANG Xuye ZHANG Yongqiang XU Ruipeng XIONG Dehua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期960-968,共9页
B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper ter... B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper terminal electrode for multilayer ceramic capacitors(MLCC)applications.The structure and property characterization of B_(2)O_(3)-Zn O-SiO_(2)glass,including X-ray diffraction,FTIR,scanning electron microscopy,high-temperature microscopy,and differential scanning calorimetry,indicated that the addition of CuO improved the glass’s acid resistance and glass-forming ability.The wettability and acid resistance of this glass were found to be excellent when CuO content was 1.50 wt%.Compared to BZS glass,the CuO-added glass exhibited excellent wettability to copper powder and corrosion resistance to the plating solution.The sintered copper electrode films prepared using the glass with CuO addition had better densification and lower sintering temperature of 750℃.Further analysis of the sintering mechanism reveals that the flowability and wettability of the glass significantly impact the sintering densification of the copper terminal electrodes. 展开更多
关键词 B_(2)O_(3)-ZnO-SiO_(2)(BZS) low melting glass MLCC DENSIFICATION copper terminal electrode
下载PDF
High-Con cent rat ion Electrosynthesis of Formic Acid/Formate from CO_(2):Reactor and Electrode Design Strategies
16
作者 Yizhu Kuang Hesamoddin Rabiee +4 位作者 Lei Ge Thomas E.Rufford Zhiguo Yuan John Bell Hao Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期141-157,共17页
The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/for... The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/formate is considered one of the economical and feasible methods,owing to their high energy densities,and ease of distribution and storage.The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO_(2)RR process cost,while the increment of product concentration can lead to the reduction of separation cost,remarkably.In this paper,we give an overview of recent strategies for highly concentrated formic acid/formate products in CO_(2)RR.CO_(2)RR is a complex process with several different products,as it has different intermediates and reaction pathways.Therefore,this review focuses on recent study strategies that can enhance targeted formic acid/formate yield,such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO_(2)in the electrolyzer.Firstly,some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations.Also,the design of planar and gas diffusion electrodes(GDEs)with the potential to deliver high-concentration formic acid/formate in CO_(2)RR is summarized.Finally,the existing technological challenges are highlighted,and further research recommendations to achieve high-concentration products in CO_(2)RR.This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO_(2)RR. 展开更多
关键词 electrochemical CO_(2)reduction reaction electrode design formic acid/formate high-concentration reactor design
下载PDF
Graphene-based electrodes and catalysts for electroreduction of CO_(2)to low-carbon alcohols
17
作者 Lei Wang Patrick Lira +5 位作者 Guangzhi Hu Jianmin Luo Zhao Sun Richard Davis Yudai Huang Sam Toan 《Materials Reports(Energy)》 2023年第2期142-153,I0004,共13页
The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to ... The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to transform intermittent energy sources(such as wind,hydro,and solar)into a fuel that can be stored until it is ready to be used.The intrinsic characteristics of the employed catalyst have a significant and substantial effect on the efficiency of CO_(2)ER and the ensuing economic viability.The paradigmatic multicarbon alcohol catalysts should increase the concentration of*CO in the reaction environment,stabilize the key intermediate products during the reaction,and facilitate the C-C coupling interaction.Since graphene has a large surface area and exceptional conductivity,it has been used as a support for active phases(nanoparticles or nanosheets).It is possible for graphene to enhance charge transport and accelerate CO_(2)conversion through its electronic and structural coupling effects.At the interface,a synergy can be produced that improves CO_(2)ER by increasing*CO adsorption,intermediate binding,and stability.This article focuses on recent advancements in graphene-based catalysts that promote CO_(2)ER to alcohols.Likewise,this paper also describes and discusses the key role graphene plays in catalyzing CO_(2)ER into alcohols.Finally,we hope to provide future ideas for the design of graphene-based electrocatalysts. 展开更多
关键词 GRAPHENE ELECTROCATALYSTS CO_(2)reduction ALCOHOL electrode
下载PDF
Free-Standing α-MoO_(3)/Ti_(3)C_(2) MXene Hybrid Electrode in Water-in-Salt Electrolytes
18
作者 Mohit Saraf Christopher E.Shuck +5 位作者 Nazgol Norouzi Kyle Matthews Alex Inman Teng Zhang Ekaterina Pomerantseva Yury Gogotsi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期6-14,共9页
While transition-metal oxides such as α-MoO_(3)provide high capacity,their use is limited by modest electronic conductivity and electrochemical instability in aqueous electrolytes.Two-dimensional(2D)MXenes,offer meta... While transition-metal oxides such as α-MoO_(3)provide high capacity,their use is limited by modest electronic conductivity and electrochemical instability in aqueous electrolytes.Two-dimensional(2D)MXenes,offer metallic conductivity,but their capacitance is limited in aqueous electrolytes.Insertion of partially solvated cations into Ti_(3)C_(2)MXene from lithium-based water-in-salt(WIS)electrolytes enables charge storage at positive potentials,allowing a wider potential window and higher capacitance.Herein,we demonstrate that α-MoO_(3)/Ti_(3)C_(2)hybrids combine the high capacity of α-MoO_(3)and conductivity of Ti_(3)C_(2)in WIS(19.8 m LiCI)electrolyte in a wide1.8 V voltage window.Cyclic voltammograms reveal multiple redox peaks from α-MoO_(3)in addition to the well-separated peaks of Ti_(3)C_(2)in the hybrid electrode.This leads to a higher specific charge and a higher rate capability compared to a carbon and binder containing α-MoO_(3)electrode.These results demonstrate that the addition of MXene to less conductive oxides eliminates the need for conductive carbon additives and binders,leads to a larger amount of charge stored,and increases redox capacity at higher rates.In addition,MXene encapsulated α-MoO_(3)showed improved electrochemical stability,which was attributed to the suppressed dissolution of α-MoO_(3).The work suggests that oxide/MXene hybrids are promising for energy storage. 展开更多
关键词 free-standing electrode Ti_(3)C_(2)MXene water-in-salt electrolytes α-MoO_(3)nanobelts
下载PDF
新型电化学反应器降解苯酚废水的研究
19
作者 丁文文 孟庆华 《山东化工》 CAS 2024年第6期238-240,244,共4页
以自制钛基PbO_(2)电极为阳极,以碳纤维管为阴极成功开发了一种基于电磁感应无线供电技术的微型电解池填充式电化学反应器,从电解质浓度、pH值和输入电压等等方面探究了新型电化学反应器对苯酚废水的最佳降解条件,当电解质浓度为0.012 5... 以自制钛基PbO_(2)电极为阳极,以碳纤维管为阴极成功开发了一种基于电磁感应无线供电技术的微型电解池填充式电化学反应器,从电解质浓度、pH值和输入电压等等方面探究了新型电化学反应器对苯酚废水的最佳降解条件,当电解质浓度为0.012 5 mol/L,pH值为5,输入电压为8 V时进行降解100 min,苯酚降解率可达92%,处理效果最佳。与传统平板式电化学反应器相比具有明显优势。 展开更多
关键词 PbO_(2)电极 电化学反应器 苯酚废水
下载PDF
5Cr油套管钢在含Cl^(-)的CO_(2)环境中的腐蚀特性研究
20
作者 赵国仙 刘冉冉 +6 位作者 李琼玮 杨立华 孙雨来 丁浪勇 王映超 张思琦 宋洋 《表面技术》 EI CAS CSCD 北大核心 2024年第6期55-66,共12页
目的掌握油气井生产中CO_(2)腐蚀对油套管的影响规律,研究兼顾耐蚀性和经济性的5Cr油套管材料在含Cl^(-)的CO_(2)环境中不同时间下的腐蚀演变规律。方法采用XRD、XPS、SEM和EDS等技术分析5Cr油套管钢在不同时间下腐蚀产物膜的演变情况,... 目的掌握油气井生产中CO_(2)腐蚀对油套管的影响规律,研究兼顾耐蚀性和经济性的5Cr油套管材料在含Cl^(-)的CO_(2)环境中不同时间下的腐蚀演变规律。方法采用XRD、XPS、SEM和EDS等技术分析5Cr油套管钢在不同时间下腐蚀产物膜的演变情况,利用丝束电极(WBE)和阻抗测试(EIS)技术对其腐蚀电化学行为进行研究。结果5Cr油套管钢腐蚀后期的平均腐蚀速率约为初期的1/2,在腐蚀14 d后,腐蚀产物膜中的Cr富集大于30%,Cr、Fe质量比达到较高水平,约为基体的15倍。随着腐蚀的进行,电荷传递电阻和产物膜覆盖引起的电阻增大,电化学反应阻力增大。在腐蚀前期具有局部不均匀性,随着腐蚀的进行,电极腐蚀电位有负移现象,最终分布区间为−0.59~−0.61 V,电极表面阳极电流区域大幅减少。结论在腐蚀时间延长的条件下,5Cr油套管钢腐蚀产物膜的致密性增加,电荷传递电阻呈变大趋势。在产物膜下的5Cr油套管钢区域,电流发生由阴极向阳极极性转变的现象,产物膜存在的孔隙使5Cr油套管钢基体金属被腐蚀,从而导致阳极电流的出现。表面局部腐蚀电位阳极区的形成和扩展使其有产生点蚀的倾向,但腐蚀产物逐渐沉积在点蚀坑内壁,形成了Cr富集的保护性表面层,原发生点蚀区域由原阳极活性点位转变为阴极区,对其发展起到了抑制作用。 展开更多
关键词 5Cr油套管钢 CO_(2)腐蚀 腐蚀产物膜 Cr元素富集 电化学阻抗谱 丝束电极
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部