Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degra...Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degradation of colloidal Pb Se NCs in ambient conditions hampers their widespread applications in infrared optoelectronics.It is well-known that the inorganic thick-shell over core improves the stability of NCs.Here,we present the synthesis of Pb Se/Pb S core/shell NCs showing wide spectral tunability,in which the molar ratio of lead(Pb)and sulfur(S)precursors,and the concentration of sulfur and Pb Se NCs in solvent have a significant effect on the efficient Pb S shell growth.The infrared light-emitting diodes(IR-LEDs)fabricated with the Pb Se/Pb S core/shell NCs exhibit an external quantum efficiency(EQE)of 1.3%at 1280 nm.The ligand exchange to optimize the distance between NCs and chloride treatment are important processes for achieving high performance on Pb Se/Pb S NC-LEDs.Our results provide evidence for the promising potential of Pb Se/Pb S NCs over the wide range of infrared optoelectronic applications.展开更多
Lead halide perovskites attracted a lot of attention in the last several years,with a focus gradually shifting from the record power conversion efficiencies reported for photovoltaic devices based on thin perovskite f...Lead halide perovskites attracted a lot of attention in the last several years,with a focus gradually shifting from the record power conversion efficiencies reported for photovoltaic devices based on thin perovskite films[1]towards superior展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0401702)the National Natural Science Foundation of China(Grant Nos.61674074 and 61405089)+6 种基金Development and Reform Commission of Shenzhen Project,China(Grant No.[2017]1395)Shenzhen Peacock Team Project,China(Grant No.KQTD2016030111203005)Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.ZDSYS201707281632549)Guangdong Province’s Key R&D Program:Micro-LED Display and Ultra-high Brightness Micro-display Technology,China(Grant No.2019B010925001)Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.2017KSYS007)Distinguished Young Scholar of National Natural Science Foundation of Guangdong,China(Grant No.2017B030306010)the start-up fund from Southern University of Science and Technology,Shenzhen,China
文摘Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degradation of colloidal Pb Se NCs in ambient conditions hampers their widespread applications in infrared optoelectronics.It is well-known that the inorganic thick-shell over core improves the stability of NCs.Here,we present the synthesis of Pb Se/Pb S core/shell NCs showing wide spectral tunability,in which the molar ratio of lead(Pb)and sulfur(S)precursors,and the concentration of sulfur and Pb Se NCs in solvent have a significant effect on the efficient Pb S shell growth.The infrared light-emitting diodes(IR-LEDs)fabricated with the Pb Se/Pb S core/shell NCs exhibit an external quantum efficiency(EQE)of 1.3%at 1280 nm.The ligand exchange to optimize the distance between NCs and chloride treatment are important processes for achieving high performance on Pb Se/Pb S NC-LEDs.Our results provide evidence for the promising potential of Pb Se/Pb S NCs over the wide range of infrared optoelectronic applications.
文摘Lead halide perovskites attracted a lot of attention in the last several years,with a focus gradually shifting from the record power conversion efficiencies reported for photovoltaic devices based on thin perovskite films[1]towards superior