Chemical coprecipitation was used to produce ultrafine and easily sinterable Y2O3-stabilized and (Y2O3,MgO)-stabilized ZrO2 powders. Six precipitation processes for preparation of ZrO2-based ultrafine powders were d...Chemical coprecipitation was used to produce ultrafine and easily sinterable Y2O3-stabilized and (Y2O3,MgO)-stabilized ZrO2 powders. Six precipitation processes for preparation of ZrO2-based ultrafine powders were designed separately, meanwhile different techniques used to control the agglomeration formation were proposed. By means of TEM, SEM, Raman spectroscopy and IR spectroscopy, the mechanisms of agglomeration control in the precipitation processes and post-precipitation and drying process were investigated. The experimental results show that adding appropriate anion surface active agents (such as PAA1460) or polymer (PEG1540 matching with PEG200) in aqueous solution systems during precipitation processes could reinforce charge effect and location effect for gel particles interface. Adding wetting agents to wet gels washing with distilled water during drying process could change interface structure of gel particles and decrease surface tension between gel particles. The agglomeration control in the precipitation, post-precipitation and drying processes had remarkable influence on the characteristics of powders. By adding various macromolecules in the processes, the agglomeration state could be controlled efficiently, and the characteristics of powders were improved.展开更多
La2O3 and Ce2O3 were penetrated into PbTiO3 to obtain conductive powders, and then they were mixed with polyurethane and butyl acetate to prepare conductive coatings. The results showed that the electric property of m...La2O3 and Ce2O3 were penetrated into PbTiO3 to obtain conductive powders, and then they were mixed with polyurethane and butyl acetate to prepare conductive coatings. The results showed that the electric property of modified PbTiO3 powders was improved by penetration of La2O3 and Ce2O3. XRD patterns showed that some new compounds such as La2Ti6O15, CeTi21O38 and Pb0.634La0.209Ti0.948O2.284 were formed, which led to the rapid increase of conductivity. The resistivity of modified PbTiO3 powders decreased to 3.88 Ω·m. The coatings using modified PbTiO3 powders as fillings also had a good conductivity. When the PbTiO3 powders were 10% and antisettle agent (bentonite) content was 0.50%, and mass ratio between polyurethane and butyl acetate was 1.05, the surface resistivity of the coatings fell down to 1.3×108 Ω·m. This kind of conductive coatings could be used in electromagnetic shielding.展开更多
Perovskite type of PbTiO 3 fine powders which are homogeneous in physic chemical properties has been hydrothermally synthesized from the different precursors. The borderline reaction conditions, such as temperature...Perovskite type of PbTiO 3 fine powders which are homogeneous in physic chemical properties has been hydrothermally synthesized from the different precursors. The borderline reaction conditions, such as temperature and time, for the formation of PbTiO 3 were established and the effect of the precursor on the particle properties was investigated. As a precursor, Pb Ti alko carbonate xerogel dispersed in 2 methoxyethanol was found to be effective for the synthesis of the PbTiO 3 powders with a lower agglomeration and a simple mode of particle size.展开更多
文摘Chemical coprecipitation was used to produce ultrafine and easily sinterable Y2O3-stabilized and (Y2O3,MgO)-stabilized ZrO2 powders. Six precipitation processes for preparation of ZrO2-based ultrafine powders were designed separately, meanwhile different techniques used to control the agglomeration formation were proposed. By means of TEM, SEM, Raman spectroscopy and IR spectroscopy, the mechanisms of agglomeration control in the precipitation processes and post-precipitation and drying process were investigated. The experimental results show that adding appropriate anion surface active agents (such as PAA1460) or polymer (PEG1540 matching with PEG200) in aqueous solution systems during precipitation processes could reinforce charge effect and location effect for gel particles interface. Adding wetting agents to wet gels washing with distilled water during drying process could change interface structure of gel particles and decrease surface tension between gel particles. The agglomeration control in the precipitation, post-precipitation and drying processes had remarkable influence on the characteristics of powders. By adding various macromolecules in the processes, the agglomeration state could be controlled efficiently, and the characteristics of powders were improved.
基金the National Natural Science Foundation of China (20571020)
文摘La2O3 and Ce2O3 were penetrated into PbTiO3 to obtain conductive powders, and then they were mixed with polyurethane and butyl acetate to prepare conductive coatings. The results showed that the electric property of modified PbTiO3 powders was improved by penetration of La2O3 and Ce2O3. XRD patterns showed that some new compounds such as La2Ti6O15, CeTi21O38 and Pb0.634La0.209Ti0.948O2.284 were formed, which led to the rapid increase of conductivity. The resistivity of modified PbTiO3 powders decreased to 3.88 Ω·m. The coatings using modified PbTiO3 powders as fillings also had a good conductivity. When the PbTiO3 powders were 10% and antisettle agent (bentonite) content was 0.50%, and mass ratio between polyurethane and butyl acetate was 1.05, the surface resistivity of the coatings fell down to 1.3×108 Ω·m. This kind of conductive coatings could be used in electromagnetic shielding.
文摘Perovskite type of PbTiO 3 fine powders which are homogeneous in physic chemical properties has been hydrothermally synthesized from the different precursors. The borderline reaction conditions, such as temperature and time, for the formation of PbTiO 3 were established and the effect of the precursor on the particle properties was investigated. As a precursor, Pb Ti alko carbonate xerogel dispersed in 2 methoxyethanol was found to be effective for the synthesis of the PbTiO 3 powders with a lower agglomeration and a simple mode of particle size.