One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT...One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.展开更多
Sol-gel based soft lithography technique has been developed to pattern a variety of ferroelectric Pb(Zr0.52Ti0.48)O3(PZT) microstructures,with feature size approaching 180 nm and good pattern transfer between the ...Sol-gel based soft lithography technique has been developed to pattern a variety of ferroelectric Pb(Zr0.52Ti0.48)O3(PZT) microstructures,with feature size approaching 180 nm and good pattern transfer between the master mold and patterned films.X-ray diffraction and high-resolution transmission electron microscopy confirm the perovskite structure of the patterned PZT.Piezoresponse force microscopy(PFM) and switching spectroscopy piezoresponse force microscopy(SSPFM) confirm their piezoelectricity and ferroelectricity.Piezoresponse as high as 2.75 nm has been observed,comparable to typical PZT films.The patterned PZT microstructures are promising for a wide range of device applications.展开更多
基金Funded by the National Natural Science Foundation of China (No. 50674048)Research Fund for the Doctoral Program of Higher Education of China(No.20103227110006)
文摘One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.
基金support from National Natural Science Foundation of China (Grant Nos. 10772155,10732100 and 10902095)the Provincial Natural Science Foundation of Hunan Province, China (Grant Nos.07JJ1008 and 09JJ7004)+2 种基金the Scientific Research Fund of Hunan Provincial Education Department (Grant No.08C864)The Asylum Research MFP-3D Atomic Force Microscope was acquired through an ARO DURIP grant(W911NF-08-01-0262)support from US National Science Foundation (DMR 0706100 and OS)
文摘Sol-gel based soft lithography technique has been developed to pattern a variety of ferroelectric Pb(Zr0.52Ti0.48)O3(PZT) microstructures,with feature size approaching 180 nm and good pattern transfer between the master mold and patterned films.X-ray diffraction and high-resolution transmission electron microscopy confirm the perovskite structure of the patterned PZT.Piezoresponse force microscopy(PFM) and switching spectroscopy piezoresponse force microscopy(SSPFM) confirm their piezoelectricity and ferroelectricity.Piezoresponse as high as 2.75 nm has been observed,comparable to typical PZT films.The patterned PZT microstructures are promising for a wide range of device applications.