In this work,porous biochar(MN-TRB_(750))was fabricated via direct pyrolysis of tea residue(TR)and Mg(NO_(3))_(2)·6H_(2)O(MN).The as-synthesized MN-TRB_(750) reached a specific surface area of 839.54 m^(2)·g...In this work,porous biochar(MN-TRB_(750))was fabricated via direct pyrolysis of tea residue(TR)and Mg(NO_(3))_(2)·6H_(2)O(MN).The as-synthesized MN-TRB_(750) reached a specific surface area of 839.54 m^(2)·g^(-1)and an average pore size of 3.75 nm with multi-level pore architecture.MN decreased TR's carbonization temperature and promoted the aromatics extent,pore structure for the frizzly flake-like biochar.Rhodamine B(RhB)was chosen as the adsorbate to explore the removal performance of organic dyes in this study.The results indicated that the maximum adsorption capacity of RhB on MN-TRB_(750) at 20℃ is up to 809.0 mg·g^(-1)with isotherms fitted well to Freundlich and Dubinin-Radushkevic models.The adsorption kinetics followed pseudo-second-order and Elovich models with an equilibrium adsorption capacity of 757.6 mg·g^(-1)as the initial concentration of RhB is 260 mg·L^(-1).High pore filling,hydrogen bond,π-πinteraction determined the adsorption of RhB onto MN-TRB850 through a multi-active center and exothermic chemical sorption process.展开更多
The heterojunction effect can effectively improve the separation efficiency of the photocatalyst’s photo-generated electron and hole pairs,thereby greatly improving the photocatalytic hydrogen production performance ...The heterojunction effect can effectively improve the separation efficiency of the photocatalyst’s photo-generated electron and hole pairs,thereby greatly improving the photocatalytic hydrogen production performance of the photocatalyst.In this paper,Bi_(6)O_(6)(OH)_(3)(NO_(3))_(3)·1.5H_(2)O(BBN)and ZnO are used to construct and synthesize Bi_(6)O_(6)(OH)_(3)(NO_(3))_(3)·1.5H_(2)O/ZnO(BBN/ZnO)heterojunction photocatalyst.Under UV-vis light irradiation,the BBN/ZnO composite could generate H_(2)with a rate of 28.66μmol·g^(−1)·h^(−1),which is higher than pure BBN(0.92μmol·g^(−1)·h^(−1))and ZnO(6.54μmol·h^(−1)·g^(−1))at around 31.1 and 4.4 times,respectively.Moreover,the experimental results found that the composite still exhibits excellent photocatalytic activity and maintains a high and stable activity in the 12-hour experiment with 3 cycles.The possible mechanism to enhance the photocatalytic behavior is attributed to the expanded light absorption range,reduced surface migration resistance,and inhibited recombination of photo-generated electron and hole pairs.展开更多
基金Supported by the Innovation and Entrepreneurship Plan Project of Shaanxi Province and Shaanxi Xueqian Normal University for College Students(S202314390048,2023DC048)。
文摘In this work,porous biochar(MN-TRB_(750))was fabricated via direct pyrolysis of tea residue(TR)and Mg(NO_(3))_(2)·6H_(2)O(MN).The as-synthesized MN-TRB_(750) reached a specific surface area of 839.54 m^(2)·g^(-1)and an average pore size of 3.75 nm with multi-level pore architecture.MN decreased TR's carbonization temperature and promoted the aromatics extent,pore structure for the frizzly flake-like biochar.Rhodamine B(RhB)was chosen as the adsorbate to explore the removal performance of organic dyes in this study.The results indicated that the maximum adsorption capacity of RhB on MN-TRB_(750) at 20℃ is up to 809.0 mg·g^(-1)with isotherms fitted well to Freundlich and Dubinin-Radushkevic models.The adsorption kinetics followed pseudo-second-order and Elovich models with an equilibrium adsorption capacity of 757.6 mg·g^(-1)as the initial concentration of RhB is 260 mg·L^(-1).High pore filling,hydrogen bond,π-πinteraction determined the adsorption of RhB onto MN-TRB850 through a multi-active center and exothermic chemical sorption process.
基金This work was supported by the Natural Science Foundation of Fujian Province[2020J01833]the Fujian Engineering Research Center of New Chinese lacquer Material[No.323030030702]+3 种基金the humbly acknowledge international funding provided by Fujian Agriculture and Forestry University[No.KXB16001A]the Education Research Program for Young and Middle-aged Teachers of Fujian Education Department[No.JAT190132]the open fund of the Key Laboratory of National Forestry&Grassland Bureau for Plant Fiber Functional Materials,Fujian Agriculture and Forestry University[No.2019KFJJ15]Key Laboratory of New Functional Textile Fiber and Material of Fujian Province will open fund project in 2020[MJUKF-FMSM202005,FKLTF 1708].
文摘The heterojunction effect can effectively improve the separation efficiency of the photocatalyst’s photo-generated electron and hole pairs,thereby greatly improving the photocatalytic hydrogen production performance of the photocatalyst.In this paper,Bi_(6)O_(6)(OH)_(3)(NO_(3))_(3)·1.5H_(2)O(BBN)and ZnO are used to construct and synthesize Bi_(6)O_(6)(OH)_(3)(NO_(3))_(3)·1.5H_(2)O/ZnO(BBN/ZnO)heterojunction photocatalyst.Under UV-vis light irradiation,the BBN/ZnO composite could generate H_(2)with a rate of 28.66μmol·g^(−1)·h^(−1),which is higher than pure BBN(0.92μmol·g^(−1)·h^(−1))and ZnO(6.54μmol·h^(−1)·g^(−1))at around 31.1 and 4.4 times,respectively.Moreover,the experimental results found that the composite still exhibits excellent photocatalytic activity and maintains a high and stable activity in the 12-hour experiment with 3 cycles.The possible mechanism to enhance the photocatalytic behavior is attributed to the expanded light absorption range,reduced surface migration resistance,and inhibited recombination of photo-generated electron and hole pairs.