A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were...A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were characterized by nitrogen adsorption-desorption,low and wide-angle X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),scanning electron microscopy(SEM),elemental mapping and energy-dispersive X-ray(EDX)methods.It was found that the particle size,electronic interactions,morphology,and textural properties of these catalysts as well as their catalytic activity in the reaction of H_(2) with O_(2) were affected by Co addition and different calcination temperatures.Also,the results showed that while the H_(2)O_(2) selectivity depends on Pd^(2+) species,the H_(2) conversion is related to Pd0 active sites.Among these catalysts,CoPd/KIT-6 calcined at 350℃(CoPd/KIT-350 catalyst)showed the best catalytic activity with 50%of H_(2)O_(2) selectivity and 51%conversion of H_(2).展开更多
Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentar...Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.展开更多
LaPO_4 and hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2)are typical metal phosphates recently found to be useful for making supported metal or metal oxide catalysts,but CePO_4(also belonging to the metal phosphate family)has ...LaPO_4 and hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2)are typical metal phosphates recently found to be useful for making supported metal or metal oxide catalysts,but CePO_4(also belonging to the metal phosphate family)has been rarely used to make supported catalysts.It would be interesting to develop CePO_4-supported catalysts and explore their catalytic applications.Herein,hexagonal CePO_4 nanorods(denoted as CePO_4-H),hexagonal CePO_4 nanowires(CePO_4-HNW),monoclinic CePO_4 nanoparticles(CePO_4-M),and monoclinic CePO_4 nanowires(CePO_4-MNW)prepared by different methods were used to support gold via deposition-precipitation with urea(DPU).The gold contents of these catalysts were all around 1 wt%.The catalytic activities of these Au/CePO_4 catalysts in CO oxidation were found to follow the sequence of Au/CePO_4-MNW>Au/CePO_4-HNW> Au/CePO_4-M>Au/CePO_4-H.These catalysts were characterized by inductively coupled plasma-optical emission spectroscopy(ICP-OES),N_2 adsorption–desorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),oxygen temperature-programmed desorption(O_2-TPD),and CO_2 temperature-programmed desorption(CO_2-TPD)to find possible correlations between the physicochemical properties and catalytic activities of these catalysts.展开更多
Composite oxide FeO x /Al 2 O 3 -supported gold catalysts were prepared by a modified two-step method. The effects of preparation conditions on the initial catalytic activity and long-time stability were studied for C...Composite oxide FeO x /Al 2 O 3 -supported gold catalysts were prepared by a modified two-step method. The effects of preparation conditions on the initial catalytic activity and long-time stability were studied for CO oxidation. XRD, XPS and in situ FTIR were employed to investigate the state of FeO x and the species on the catalyst surface. The results showed that Au/FeO x /Al 2 O 3 catalysts prepared by this method exhibited high activity and high stability in a wide pH value range. Calcination pretreatment was proved to be beneficial to improving the activity and stability. The beneficial effects of FeO x acting as a structural promoter could be ascribed to the ability to supply active oxygen species. As the precursor of FeO x , Fe(NO 3 ) 3 is superior to FeCl 3 for obtaining higher stability.展开更多
Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were exa...Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were examined after separate treatment in CO+O2 or CO2 +O2 .Furthermore,in situ FT-IR studies were performed to investigate the species on the surface when CO or CO+O2 or CO2 +O2 was selected separately as adsorption gas.The results showed that Au/Al2O3 catalyst exhibited very high initial activity,but the catalytic activity was found to decrease gradually during CO oxidation with time on stream.And also,the activity of the catalyst declined after treatment in CO+O2 or CO2 +O2 .The formation and accumulation of carbonate-like species during CO oxidation or treatment in CO+O2 or CO2 +O2 might be mainly responsible for the activity decrease,which was reversible.展开更多
Pd-based catalysts modified by cobalt were prepared by co-impregnation and sequential impregnation methods,and characterized by X-ray powder diffraction (XRD),N2 adsorption/desorption (Brunauer-Emmet-Teller method...Pd-based catalysts modified by cobalt were prepared by co-impregnation and sequential impregnation methods,and characterized by X-ray powder diffraction (XRD),N2 adsorption/desorption (Brunauer-Emmet-Teller method),CO-chemisorption and X-ray photoelectron spectroscopy (XPS).The activity of Pd catalysts was tested in the simulated exhaust gas from lean-burn natural gas vehicles.The effect of Co on the performance of water poisoning resistance for Pd catalysts was estimated in the simulated exhaust gas with and without the presence of water vapor.It was found that the effect of Co significantly depended on the preparation process.PdCo/La-Al2O3 catalyst prepared by co-impregnation exhibited better water-resistant performance.The results of XPS indicated that both CoAl2O4 and Co3O4 were present in the Pd catalysts modified by Co.For the catalyst prepared by sequential impregnation method,the ratio of CoAl2O4/Co3O4 was higher than that of the catalyst prepared by co-impregnation method.It could be concluded that Co3O4 played an important role in improving water-resistant performance.展开更多
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle...Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.展开更多
We used a dielectric barrier discharge(DBD)plasma technique to eliminate the protective ligand of ZnAl-hydrotalcite-supported gold nanoclusters.We used X-ray powder diffraction,ultraviolet-visible spectrophotometry,th...We used a dielectric barrier discharge(DBD)plasma technique to eliminate the protective ligand of ZnAl-hydrotalcite-supported gold nanoclusters.We used X-ray powder diffraction,ultraviolet-visible spectrophotometry,thermogravimetric analysis,and high angle annular dark-field-scanning transmission electron microscopy characterization to show that the samples pretreated with/without DBD-plasma displayed different performances in CO oxidation.The enhanced activity was obtained on the plasma-treated samples,implying that the protective ligand was effectively removed via the plasma technique.The crystal structure of the plasma-treated samples changed markedly,suggesting that the plasma treatment could not only break the chemical bond between the gold and the protective agent but could also decompose the interlayer ions over the hydrotalcite support.The particle sizes of the gold after DBD-plasma treatment implied that it was a good way to control the size of the gold nanoparticles under mild conditions.展开更多
Single-atom catalysts(SACs) with well-defined and specific single-atom dispersion on supports offer great potential for achieving both high catalytic activity and selectivity. Covalent organic frameworks(COFs) with ta...Single-atom catalysts(SACs) with well-defined and specific single-atom dispersion on supports offer great potential for achieving both high catalytic activity and selectivity. Covalent organic frameworks(COFs) with tailormade crystalline structures and designable atomic composition is a class of promising supports for SACs. Herein, we have studied the binding sites and stability of Pd single atoms(SAs)dispersed on triazine COF(Pd1/trzn-COF) and the reaction mechanism of CO oxidation using the density functional theory(DFT). By evaluating different adsorption sites, including the nucleophilic sp2C atoms, heteroatoms and the conjugated π-electrons of aromatic ring and triazine, it is found that Pd SAs can stably combine with trzn-COF with a binding energy around-5.0 eV, and there are two co-existing dynamic Pd1/trzn-COFs due to the adjacent binding sites on trzn-COF. The reaction activities of CO oxidation on Pd1/trzn-COF can be regulated by the anion–π interaction between a +δ phenyl center and the related-δ moieties as well as the electron-withdrawing feature of imine in the specific complexes. The Pd1/trzn-COF catalyst is found to have a high catalytic activity for CO oxidation via a plausible tri-molecular Eley-Rideal(TER) reaction mechanism. This work provides insights into the d–π interaction between Pd SAs and trznCOF, and helps to better understand and design new SACs supported on COF nanomaterials.展开更多
The effect of the reduction method on the catalytic properties of palladium catalysts supported on activated carbon for the oxidation of D-glucose was examined.The reduction methods investigated include argon glow dis...The effect of the reduction method on the catalytic properties of palladium catalysts supported on activated carbon for the oxidation of D-glucose was examined.The reduction methods investigated include argon glow discharge plasma reduction at room temperature,reduction by flowing hydrogen at elevated temperature,and reduction by formaldehyde at room temperature.The plasma-reduced catalyst shows the smallest metal particles with a narrow size distribution that leads to a much higher activity.The catalyst characteristics show that the plasma reduction increases the amount of oxygen-containing functional groups,which significantly enhances the hydrophilic property of the activated carbon and improves the dispersion of the metal.展开更多
With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is as...With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is ascribed to the bridged CO on metallic gold (2085 cm -1 ). CO pulse reaction showed that Au/Fe 2O 3 catalyst had a room temperature activity even in the presence of moisture. The produced CO 2 was detained and more easily desorbed from supported gold catalyst than support oxide. TPD IDT results indicated that the O - 2 superoxide ions are the possible active oxygen species.展开更多
The interaction between support and noble metal plays a crucial role in heterogeneous catalysis design.However,how to tune metal support interactions to optimize the activity still needs further exploration.CeO_(2) wa...The interaction between support and noble metal plays a crucial role in heterogeneous catalysis design.However,how to tune metal support interactions to optimize the activity still needs further exploration.CeO_(2) was introduced to promote CO oxidation ove r Ir/TiO_(2) by adjusting the interaction strength between iridium(Ir)and CeO_(2).The strong interaction between Ir and CeO_(2) blocks CO adsorption and causes low CO oxidation activity.However,introducing CeO_(2) on Ir/TiO_(2) produces localized interaction between Ir and CeO_(2),which can tune the surface electronic state of Ir,so a"volcano curve"relationship between CO oxidation activity and electronic state is built.Limited amount of CeO_(2) on Ir/TiO_(2)(Ir/Ce_(0.2)Ti)leads to CO complete oxidization at 22℃,and a new pathway for CO oxidation was explored.The study demonstrates that the utilization of tuning interaction strength between active metal and support is a potential method to increase the catalytic activity.展开更多
La2O3 doped Fe2O3 support was prepared by co-precipitation method,and gold was loaded by deposition-precipitation.Thermal stability of gold catalyst was enhanced considerably by La2O3 doping.Even when calcined at 500 ...La2O3 doped Fe2O3 support was prepared by co-precipitation method,and gold was loaded by deposition-precipitation.Thermal stability of gold catalyst was enhanced considerably by La2O3 doping.Even when calcined at 500 oC for 12 h,the catalyst doped with La2O3 could convert 90% of CO at 28.9 oC,while the catalyst without La2O3 doping achieved 90% CO conversion at 43.5 oC.Characterization techniques,such as N2 adsorption-desorption,X-ray diffraction(XRD),transmission electron microscopic(TEM) and thermogravime...展开更多
One-dimensional titanium dioxide nanorod(TNR)-supported Cu catalysts(2.5 wt.%-12.5 wt.%)were synthesized using deposition-precipitation.X-ray photoelectron spectroscopy,temperature programmed reduction and CO chemisor...One-dimensional titanium dioxide nanorod(TNR)-supported Cu catalysts(2.5 wt.%-12.5 wt.%)were synthesized using deposition-precipitation.X-ray photoelectron spectroscopy,temperature programmed reduction and CO chemisorption measurements showed that Cu doping over TNR offered metal-support interactions and interfacial active sites that had a profound impact on the catalytic performance.The role of the Cu-TNR interface was investigated by comparing the catalytic activity of Cu-TNR catalysts with that of pure CuO nanoparticles in CO oxidation.The presence of highly dispersed copper species,a high number of interfacial active sites,CO adsorption capacity and surface/lattice oxygen were found to be responsible for the excellent activity of 7.5CU-TNR(ie,Cu loading of 7.5 wt.%on TNR).Moreover,the Cu-TNR catalysts followed the Langmuir-Hinshelwood reaction mechanism with 7.5CU-TNR,exhibiting an apparent activation energy of 44.7 kJ/mol.The TNR-supported Cu catalyst gave the highest interfacial catalytic activity in medium-temperature CO oxidation(120-240℃)compared to other commonly used supports,including titanium dioxide nanoparticles(TiO2-P25),silica(SiO2)and alumina(Al20g)in which copper species were nonhomogeneously dispersed.This study confirms that medium-temperature CO oxidation is highly sensitive to the morphology and structure of the supporting material.展开更多
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile...Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.展开更多
Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold lo...Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.展开更多
Ceria supported platinum catalyst has now been widely studied due to its excellent activity for CO oxidatio n.However,the electron state of active metal center is still an open question.In this work,a ce ria nanorod s...Ceria supported platinum catalyst has now been widely studied due to its excellent activity for CO oxidatio n.However,the electron state of active metal center is still an open question.In this work,a ce ria nanorod support was prepared and platinum(Pt)with 0.9 at%was deposited using an impregnation method to obtain Pt/CeO_(2)catalyst.With the help of"light-off"experiment and temperatureprogrammed reduction under CO(CO-TPR)test,the conclusion is proposed that the process of hydrogen reduction can enhance the activity of CO oxidation reaction for the generation of optimal active Pt site.An innovative near-situ X-ray absorption fine structure(XAFS)technique was used to investigate the chemical state of central Pt atom during the reaction process,clearly demonstrating that the high oxidized state of Pt does harm to the activity for CO oxidation while the relatively reductive Pt exhibits high activity,and the different oxidized state and chemical environment of Pt during every process has been identified.Furthermore,the activity of our Pt/CeO_(2)catalyst is superior to that of most of the previous reports about CO catalytic oxidation by Pt based catalyst.Moreover,the optimal active species(Pt-O_(4))have been identified after hydrogen reduction,which could be a possible key strategy to control the oxidation of Pt.展开更多
A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) a...A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) as stabilizer and complexing agent. This method is very simple. The average size of the Pd particles in the Pd/C catalyst prepared with the improved complex reduction method is as small as about 2.1 nm and the Pd particles in the Pd/C catalyst possess an excellent uniformity. The Pd/C catalyst shows a high electrocatalytic activity and stability for the formic acid oxidation.展开更多
Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR...Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.展开更多
Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples w...Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples were characterized by means of various techniques, and their catalytic activities for HCHO(0.2%) oxidation were evaluated. Among the samples, Cu/Na Sep exhibited superior performance, and complete HCHO conversion was achieved at 100 ℃(GHSV = 240000 m L/(g·h)). Additionally, the sample retained good catalytic activity during a 42 h stability test. A number of factors, including elevated acidity, the abundance of oxygen species, and favorable low-temperature reducibility, were responsible for the excellent catalytic activity of Cu/Na Sep. According to the results of the in-situ DRIFTS characterization, the HCHO oxidation mechanism was as follows:(i) HCHO was rapidly decomposed into dioxymethylene(DOM) species on the Cu/Na Sep surface;(ii) DOM was then immediately converted to formate species;(iii) the resultant formate species were further oxidized to carbonates;(iv) the carbonate species were eventually converted to CO2 and H2O.展开更多
基金the financial support(Research Council Grant)provided by Isfahan University of Technology(Iran).
文摘A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were characterized by nitrogen adsorption-desorption,low and wide-angle X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),scanning electron microscopy(SEM),elemental mapping and energy-dispersive X-ray(EDX)methods.It was found that the particle size,electronic interactions,morphology,and textural properties of these catalysts as well as their catalytic activity in the reaction of H_(2) with O_(2) were affected by Co addition and different calcination temperatures.Also,the results showed that while the H_(2)O_(2) selectivity depends on Pd^(2+) species,the H_(2) conversion is related to Pd0 active sites.Among these catalysts,CoPd/KIT-6 calcined at 350℃(CoPd/KIT-350 catalyst)showed the best catalytic activity with 50%of H_(2)O_(2) selectivity and 51%conversion of H_(2).
基金the National Natural Science Foundation of China(20825310,20973011)the National Basic Research Program of China(973 Program,2011CB201400,2011CB808700)
文摘Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.
基金Supported by the National Natural Science Foundation of China(21177028 and21477022)
文摘LaPO_4 and hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2)are typical metal phosphates recently found to be useful for making supported metal or metal oxide catalysts,but CePO_4(also belonging to the metal phosphate family)has been rarely used to make supported catalysts.It would be interesting to develop CePO_4-supported catalysts and explore their catalytic applications.Herein,hexagonal CePO_4 nanorods(denoted as CePO_4-H),hexagonal CePO_4 nanowires(CePO_4-HNW),monoclinic CePO_4 nanoparticles(CePO_4-M),and monoclinic CePO_4 nanowires(CePO_4-MNW)prepared by different methods were used to support gold via deposition-precipitation with urea(DPU).The gold contents of these catalysts were all around 1 wt%.The catalytic activities of these Au/CePO_4 catalysts in CO oxidation were found to follow the sequence of Au/CePO_4-MNW>Au/CePO_4-HNW> Au/CePO_4-M>Au/CePO_4-H.These catalysts were characterized by inductively coupled plasma-optical emission spectroscopy(ICP-OES),N_2 adsorption–desorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),oxygen temperature-programmed desorption(O_2-TPD),and CO_2 temperature-programmed desorption(CO_2-TPD)to find possible correlations between the physicochemical properties and catalytic activities of these catalysts.
基金supported by the Science and Research Reward Fund Program of Shandong Excellent Young Scientist of China (2007BS04033)
文摘Composite oxide FeO x /Al 2 O 3 -supported gold catalysts were prepared by a modified two-step method. The effects of preparation conditions on the initial catalytic activity and long-time stability were studied for CO oxidation. XRD, XPS and in situ FTIR were employed to investigate the state of FeO x and the species on the catalyst surface. The results showed that Au/FeO x /Al 2 O 3 catalysts prepared by this method exhibited high activity and high stability in a wide pH value range. Calcination pretreatment was proved to be beneficial to improving the activity and stability. The beneficial effects of FeO x acting as a structural promoter could be ascribed to the ability to supply active oxygen species. As the precursor of FeO x , Fe(NO 3 ) 3 is superior to FeCl 3 for obtaining higher stability.
基金supported by the Science and Research Reward Fund Program of Shandong Excellent Young Scientist of China (2007BS04033)
文摘Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were examined after separate treatment in CO+O2 or CO2 +O2 .Furthermore,in situ FT-IR studies were performed to investigate the species on the surface when CO or CO+O2 or CO2 +O2 was selected separately as adsorption gas.The results showed that Au/Al2O3 catalyst exhibited very high initial activity,but the catalytic activity was found to decrease gradually during CO oxidation with time on stream.And also,the activity of the catalyst declined after treatment in CO+O2 or CO2 +O2 .The formation and accumulation of carbonate-like species during CO oxidation or treatment in CO+O2 or CO2 +O2 might be mainly responsible for the activity decrease,which was reversible.
基金supported by the National Natural Science Foundation of China (20773090)the Ph.D.Programs Foundation of Ministry of Education of China (200806100009)
文摘Pd-based catalysts modified by cobalt were prepared by co-impregnation and sequential impregnation methods,and characterized by X-ray powder diffraction (XRD),N2 adsorption/desorption (Brunauer-Emmet-Teller method),CO-chemisorption and X-ray photoelectron spectroscopy (XPS).The activity of Pd catalysts was tested in the simulated exhaust gas from lean-burn natural gas vehicles.The effect of Co on the performance of water poisoning resistance for Pd catalysts was estimated in the simulated exhaust gas with and without the presence of water vapor.It was found that the effect of Co significantly depended on the preparation process.PdCo/La-Al2O3 catalyst prepared by co-impregnation exhibited better water-resistant performance.The results of XPS indicated that both CoAl2O4 and Co3O4 were present in the Pd catalysts modified by Co.For the catalyst prepared by sequential impregnation method,the ratio of CoAl2O4/Co3O4 was higher than that of the catalyst prepared by co-impregnation method.It could be concluded that Co3O4 played an important role in improving water-resistant performance.
基金support by the National Natural Science Foundation of China(U21A20306,U20A20152)Natural Science Foundation of Hebei Province(B2022202077).
文摘Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.
文摘We used a dielectric barrier discharge(DBD)plasma technique to eliminate the protective ligand of ZnAl-hydrotalcite-supported gold nanoclusters.We used X-ray powder diffraction,ultraviolet-visible spectrophotometry,thermogravimetric analysis,and high angle annular dark-field-scanning transmission electron microscopy characterization to show that the samples pretreated with/without DBD-plasma displayed different performances in CO oxidation.The enhanced activity was obtained on the plasma-treated samples,implying that the protective ligand was effectively removed via the plasma technique.The crystal structure of the plasma-treated samples changed markedly,suggesting that the plasma treatment could not only break the chemical bond between the gold and the protective agent but could also decompose the interlayer ions over the hydrotalcite support.The particle sizes of the gold after DBD-plasma treatment implied that it was a good way to control the size of the gold nanoparticles under mild conditions.
基金supported by the National Natural Science Foundation of China (22033005,21590792 and 21763006)Guangdong Provincial Key Laboratory of Catalysis (2020B121201002)。
文摘Single-atom catalysts(SACs) with well-defined and specific single-atom dispersion on supports offer great potential for achieving both high catalytic activity and selectivity. Covalent organic frameworks(COFs) with tailormade crystalline structures and designable atomic composition is a class of promising supports for SACs. Herein, we have studied the binding sites and stability of Pd single atoms(SAs)dispersed on triazine COF(Pd1/trzn-COF) and the reaction mechanism of CO oxidation using the density functional theory(DFT). By evaluating different adsorption sites, including the nucleophilic sp2C atoms, heteroatoms and the conjugated π-electrons of aromatic ring and triazine, it is found that Pd SAs can stably combine with trzn-COF with a binding energy around-5.0 eV, and there are two co-existing dynamic Pd1/trzn-COFs due to the adjacent binding sites on trzn-COF. The reaction activities of CO oxidation on Pd1/trzn-COF can be regulated by the anion–π interaction between a +δ phenyl center and the related-δ moieties as well as the electron-withdrawing feature of imine in the specific complexes. The Pd1/trzn-COF catalyst is found to have a high catalytic activity for CO oxidation via a plausible tri-molecular Eley-Rideal(TER) reaction mechanism. This work provides insights into the d–π interaction between Pd SAs and trznCOF, and helps to better understand and design new SACs supported on COF nanomaterials.
基金supported by the National Natural Science Foundation of China (20990223)
文摘The effect of the reduction method on the catalytic properties of palladium catalysts supported on activated carbon for the oxidation of D-glucose was examined.The reduction methods investigated include argon glow discharge plasma reduction at room temperature,reduction by flowing hydrogen at elevated temperature,and reduction by formaldehyde at room temperature.The plasma-reduced catalyst shows the smallest metal particles with a narrow size distribution that leads to a much higher activity.The catalyst characteristics show that the plasma reduction increases the amount of oxygen-containing functional groups,which significantly enhances the hydrophilic property of the activated carbon and improves the dispersion of the metal.
文摘With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is ascribed to the bridged CO on metallic gold (2085 cm -1 ). CO pulse reaction showed that Au/Fe 2O 3 catalyst had a room temperature activity even in the presence of moisture. The produced CO 2 was detained and more easily desorbed from supported gold catalyst than support oxide. TPD IDT results indicated that the O - 2 superoxide ions are the possible active oxygen species.
基金Project supported by the Science Foundation of China Tobacco Zhejiang Industrial Co.LTD(ZJZY2021A013,ZJZY2023C001)the National Natural Science Foundation of China(21976057)。
文摘The interaction between support and noble metal plays a crucial role in heterogeneous catalysis design.However,how to tune metal support interactions to optimize the activity still needs further exploration.CeO_(2) was introduced to promote CO oxidation ove r Ir/TiO_(2) by adjusting the interaction strength between iridium(Ir)and CeO_(2).The strong interaction between Ir and CeO_(2) blocks CO adsorption and causes low CO oxidation activity.However,introducing CeO_(2) on Ir/TiO_(2) produces localized interaction between Ir and CeO_(2),which can tune the surface electronic state of Ir,so a"volcano curve"relationship between CO oxidation activity and electronic state is built.Limited amount of CeO_(2) on Ir/TiO_(2)(Ir/Ce_(0.2)Ti)leads to CO complete oxidization at 22℃,and a new pathway for CO oxidation was explored.The study demonstrates that the utilization of tuning interaction strength between active metal and support is a potential method to increase the catalytic activity.
基金supported by the Henkel Professorship of Tongji University
文摘La2O3 doped Fe2O3 support was prepared by co-precipitation method,and gold was loaded by deposition-precipitation.Thermal stability of gold catalyst was enhanced considerably by La2O3 doping.Even when calcined at 500 oC for 12 h,the catalyst doped with La2O3 could convert 90% of CO at 28.9 oC,while the catalyst without La2O3 doping achieved 90% CO conversion at 43.5 oC.Characterization techniques,such as N2 adsorption-desorption,X-ray diffraction(XRD),transmission electron microscopic(TEM) and thermogravime...
基金The authors would like to thank the financial support from the Ministry of Business,Innovation&Employment in New Zealand under the MBIE Endeavour"Smart Ideas"grant(UOCX1905).
文摘One-dimensional titanium dioxide nanorod(TNR)-supported Cu catalysts(2.5 wt.%-12.5 wt.%)were synthesized using deposition-precipitation.X-ray photoelectron spectroscopy,temperature programmed reduction and CO chemisorption measurements showed that Cu doping over TNR offered metal-support interactions and interfacial active sites that had a profound impact on the catalytic performance.The role of the Cu-TNR interface was investigated by comparing the catalytic activity of Cu-TNR catalysts with that of pure CuO nanoparticles in CO oxidation.The presence of highly dispersed copper species,a high number of interfacial active sites,CO adsorption capacity and surface/lattice oxygen were found to be responsible for the excellent activity of 7.5CU-TNR(ie,Cu loading of 7.5 wt.%on TNR).Moreover,the Cu-TNR catalysts followed the Langmuir-Hinshelwood reaction mechanism with 7.5CU-TNR,exhibiting an apparent activation energy of 44.7 kJ/mol.The TNR-supported Cu catalyst gave the highest interfacial catalytic activity in medium-temperature CO oxidation(120-240℃)compared to other commonly used supports,including titanium dioxide nanoparticles(TiO2-P25),silica(SiO2)and alumina(Al20g)in which copper species were nonhomogeneously dispersed.This study confirms that medium-temperature CO oxidation is highly sensitive to the morphology and structure of the supporting material.
基金supported by the National Natural Science Committee of China-Liaoning Provincial People's Government Joint Fund(U1908204)National Natural Science Foundation of China(21876006,21976009,and 21961160743)+2 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)Natural Science Foundation of Beijing Municipal Commission of Education(KM201710005004)Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(CIT&TCD201904019)。
文摘Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.
基金Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050269)the Fundamental Research Funds for the Central Universities(226-2023-00085,226-2023-00057).
文摘Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.
基金Project supported by Shanghai Large Scientific Facilities CenterNational Key Basic Research Program of China(2017YFA0403402)+1 种基金the National Natural Science Foundation of China(U1932119)This work was also supported by Shanghai Large Scientific Facilities Center.
文摘Ceria supported platinum catalyst has now been widely studied due to its excellent activity for CO oxidatio n.However,the electron state of active metal center is still an open question.In this work,a ce ria nanorod support was prepared and platinum(Pt)with 0.9 at%was deposited using an impregnation method to obtain Pt/CeO_(2)catalyst.With the help of"light-off"experiment and temperatureprogrammed reduction under CO(CO-TPR)test,the conclusion is proposed that the process of hydrogen reduction can enhance the activity of CO oxidation reaction for the generation of optimal active Pt site.An innovative near-situ X-ray absorption fine structure(XAFS)technique was used to investigate the chemical state of central Pt atom during the reaction process,clearly demonstrating that the high oxidized state of Pt does harm to the activity for CO oxidation while the relatively reductive Pt exhibits high activity,and the different oxidized state and chemical environment of Pt during every process has been identified.Furthermore,the activity of our Pt/CeO_(2)catalyst is superior to that of most of the previous reports about CO catalytic oxidation by Pt based catalyst.Moreover,the optimal active species(Pt-O_(4))have been identified after hydrogen reduction,which could be a possible key strategy to control the oxidation of Pt.
基金Supported by the "863" Program of Science and Technology Ministry of China(Nos.2006AA05Z137, 2007AA05Z143 and 2007AA05Z159)National Natural Science Foundation of China(Nos.20433060, 20473038, 20573057 and 20703043)the Natural Science Foundation of Jiangsu Province, China(No.BK2006224).
文摘A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) as stabilizer and complexing agent. This method is very simple. The average size of the Pd particles in the Pd/C catalyst prepared with the improved complex reduction method is as small as about 2.1 nm and the Pd particles in the Pd/C catalyst possess an excellent uniformity. The Pd/C catalyst shows a high electrocatalytic activity and stability for the formic acid oxidation.
基金financially supported by the National Natural Science Foundation of China (Nos. 21576122, 21646001, 21506080)Natural Science Foundation of Jiangsu Province (Nos. BK20150485, BK20170528)+2 种基金China Postdoctoral Science Foundation (2017M611727)Jiangsu Planned Projects for Postdoctoral Research Funds (1701104B)supported by the Student Innovation and Entrepreneurship Training Program (201810299332 W)
文摘Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.
文摘Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples were characterized by means of various techniques, and their catalytic activities for HCHO(0.2%) oxidation were evaluated. Among the samples, Cu/Na Sep exhibited superior performance, and complete HCHO conversion was achieved at 100 ℃(GHSV = 240000 m L/(g·h)). Additionally, the sample retained good catalytic activity during a 42 h stability test. A number of factors, including elevated acidity, the abundance of oxygen species, and favorable low-temperature reducibility, were responsible for the excellent catalytic activity of Cu/Na Sep. According to the results of the in-situ DRIFTS characterization, the HCHO oxidation mechanism was as follows:(i) HCHO was rapidly decomposed into dioxymethylene(DOM) species on the Cu/Na Sep surface;(ii) DOM was then immediately converted to formate species;(iii) the resultant formate species were further oxidized to carbonates;(iv) the carbonate species were eventually converted to CO2 and H2O.