期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Pd/MnO_(2)@C催化剂对Cr(Ⅵ)液相催化加氢还原的研究
1
作者 李电照 曹玉红 +1 位作者 余代良 刘潘新辰 《环境科学与技术》 CAS CSCD 北大核心 2023年第5期10-15,共6页
液体催化加氢技术是一种绿色经济无污染且能够有效还原去除水中污染物的技术。文章以贵金属Pd作为活性组分,以MnO_(2)作为载体,通过在Pd/MnO_(2)催化剂的表面包裹导电的碳层,形成碳包裹催化剂(Pd/MnO_(2)@C)。通过ICP、XRD、SEM和Raman... 液体催化加氢技术是一种绿色经济无污染且能够有效还原去除水中污染物的技术。文章以贵金属Pd作为活性组分,以MnO_(2)作为载体,通过在Pd/MnO_(2)催化剂的表面包裹导电的碳层,形成碳包裹催化剂(Pd/MnO_(2)@C)。通过ICP、XRD、SEM和Raman等表征技术手段对催化剂的组成和形貌进行表征,并系统地研究催化剂催化加氢还原Cr(Ⅵ)的性能。为了比较包裹碳催化剂的炭化温度影响,制备了一系列不同炭化温度的Pd/MnO_(2)@C催化剂。结果表明Pd/MnO_(2)@C-600催化剂对还原Cr(Ⅵ)具有良好的稳定性。 展开更多
关键词 包裹 pd/mno_(2)@c 催化加氢 Cr(Ⅵ) 炭化温度
下载PDF
Li-O_(2)电池阴极Pd/MWCNTs-MnO_(2)催化剂制备及其电化学性能研究
2
作者 刘德宠 赵红 +1 位作者 张勇 肖丁元 《大连交通大学学报》 CAS 2021年第3期40-44,共5页
为了加快Li-O_(2)电池投入实际应用的速度,首先设计相对封闭体系锂氧电池,并通过水合肼还原法将氯化钯和碳纳米管(MWCNTs)还原为Pd/MWCNTs复合材料,然后与商业MnO_(2)均匀混合得到Pd/MWCNTs-MnO_(2)阴极催化剂材料.通过对电池在相对封... 为了加快Li-O_(2)电池投入实际应用的速度,首先设计相对封闭体系锂氧电池,并通过水合肼还原法将氯化钯和碳纳米管(MWCNTs)还原为Pd/MWCNTs复合材料,然后与商业MnO_(2)均匀混合得到Pd/MWCNTs-MnO_(2)阴极催化剂材料.通过对电池在相对封闭体系中测试,结果表明:当放电截止电压为2.0 V时,在100 mA/g的电流密度下首次放电的比容量约为2 250 mAh/g;在1 000 mA/g的电流密度下该电池在相对封闭体系中可以循环44个周期.该研究结果将为Li-O_(2)电池的商业化应用提供新的研究思路. 展开更多
关键词 Li-O_(2)电池 相对封闭体系 pd mno_(2)
下载PDF
MnO_(2)-C载体对Pd催化剂电催化性能的研究
3
作者 李芳芳 房越 +1 位作者 杨富开 曲微丽 《电池工业》 CAS 2022年第6期292-294,共3页
以MnO_(2)和CabotVulcanXC-72为原料合成了MnO_(2)-C材料,并将其用作担载Pd纳米颗粒的载体,从而制备出Pd/MnO_(2)-C催化剂,并研究其在酸性环境下对甲酸的电催化氧化性能,在电化学测试中,催化剂的稳定性及活性有明显的提高,通过进一步的... 以MnO_(2)和CabotVulcanXC-72为原料合成了MnO_(2)-C材料,并将其用作担载Pd纳米颗粒的载体,从而制备出Pd/MnO_(2)-C催化剂,并研究其在酸性环境下对甲酸的电催化氧化性能,在电化学测试中,催化剂的稳定性及活性有明显的提高,通过进一步的优化MnO_(2)在载体材料中所占比例,当MnO_(2)占载体质量15%时,催化剂在甲酸中氧化的稳定性及活性达到最高。 展开更多
关键词 直接甲酸燃料电池 二氧化锰 pd/mno_(2)-C催化剂
下载PDF
Effective electrocatalytic hydrodechlorination of 2,4,6-trichlorophenol by a novel Pd/MnO_(2)/Ni foam cathode 被引量:3
4
作者 Zi-Meng Zhang Rui Cheng +8 位作者 Jun Nan Xue-Qi Chen Cong Huang Di Cao Cai-Hua Bai Jing-Long Han Bin Liang Zhi-Ling Li Ai-Jie Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3823-3828,共6页
Pd modified electrodes possess problems such as easy agglomeration and low electrolytic ability,and the use of manganese dioxide(MnO_(2)) to facilitate Pd reduction of organic pollutants is just started.However,there ... Pd modified electrodes possess problems such as easy agglomeration and low electrolytic ability,and the use of manganese dioxide(MnO_(2)) to facilitate Pd reduction of organic pollutants is just started.However,there is still a limited understanding of how to match the Pd load and MnO_(2) to realize optimal dechlorination efficiency at minimum cost.Here,a Pd/MnO_(2)/Ni foam cathode was successfully fabricated and applied for the efficient electrochemical dechlorination of 2,4,6-trichlorophenol(2,4,6-TCP).The optimal electrocatalytic hydrodechlorination(ECH)performance with 2,4,6-TCP dechlorination efficiency(92.58%in 180 min)was obtained when the concentration of PdCl_(2) precipitation was 1 mmol/L,the deposition time of MnO_(2) was 300 s and cathode potential was-0.8 V.Performance influenced by the exogenous factors(e.g.,initial pH and coexisted ions)were further investigated.It was found that the neutral pH was the most favorable for ECH and a reduction in dechlorination efficiency(6%~47.6%)was observed in presence of 5 mmol/L of NO_(2)^(-),NO_(3)^(-),S^(2-)or SO_(3)^(2-).Cyclic voltammetry(CV)and quenching experiments verified the existence of three hydrogen species on Pd surface,including adsorbed atomic hydrogen(H^(*)_(ads)),absorbed atomic hydrogen(H^(*)_(abs)),and molecular hydrogen(H_(2)).And the introduction of MnO_(2)promoted the generation of atomic H^(*).Only adsorbed atomic hydrogen(H^(*)_(ads)) was confirmed that it truly facilitated the ECH process.Besides H^(*)_(ads) induced reduction,the direct reduction by cathode electrons also participated in the 2,4,6-TCP dechlorination process.Pd/MnO_(2)/Ni foam cathode shows excellent dechlorination performance,fine stability and recyclable potential,which provides strategies for the effective degradation of persistent halogenated organic pollutants in groundwater. 展开更多
关键词 pd/mno_(2)/Ni foam cathode 2 4 6-Trichlorophenol Electrocatalytic hydrodechlorination Dechlorination pathway Atomic H^(*)generation and utilization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部