Palladium(Pd) nanostructures are highly promising electrocatalysts for the carbon dioxide electrochemical reduction(CO_(2) ER). At present, it is still challenge for the synthesis of Pd nanostructures with high activi...Palladium(Pd) nanostructures are highly promising electrocatalysts for the carbon dioxide electrochemical reduction(CO_(2) ER). At present, it is still challenge for the synthesis of Pd nanostructures with high activity, selectivity and stability. In this work, a facile PdII-complex pyrolysis method is applied to synthesize the high-quality one-dimensional heterostructured Pd/Pd O nanowires(Pd/Pd O H-NWs).The as-prepared Pd/Pd O H-NWs have a large electrochemically active surface area, abundant defects and Pd/Pd O heterostructure. Electrochemical measurement results reveal that Pd/Pd O H-NWs exhibit up to 94% CO Faraday efficiency with a current density of 11.6 m A cm^(-2) at an applied potential of -0.8 V. Meanwhile, Pd/Pd O H-NWs can achieve a stable catalytic process of 12 h for CO_(2) ER. Such outstanding CO_(2) ER performance of Pd/Pd O H-NWs has also been verified in the flow cell test. The density functional theory calculations indicate that Pd/Pd O heterostructure can significantly weaken the CO adsorption on Pd sites, which improves the CO tolerance and consequently enhances the catalytic performance of Pd/Pd O H-NWs for CO_(2) ER. This work highlights a facile complex pyrolysis strategy for the synthesis of Pd-based CO_(2) ER catalysts and provides a new application instance of metal/metal oxide heterostructure in electrocatalysis.展开更多
基金supported by the National Natural Science Foundation of China(51873100)Natural Science Foundation of Shaanxi Province(2020JZ-23)+2 种基金the Fundamental Research Funds for the Central Universities(GK202101005 and 2021CBLZ004)the Innovation Team Project for Graduate Student at Shaanxi Normal University(TD2020048Y)the 111 Project(B14041)。
文摘Palladium(Pd) nanostructures are highly promising electrocatalysts for the carbon dioxide electrochemical reduction(CO_(2) ER). At present, it is still challenge for the synthesis of Pd nanostructures with high activity, selectivity and stability. In this work, a facile PdII-complex pyrolysis method is applied to synthesize the high-quality one-dimensional heterostructured Pd/Pd O nanowires(Pd/Pd O H-NWs).The as-prepared Pd/Pd O H-NWs have a large electrochemically active surface area, abundant defects and Pd/Pd O heterostructure. Electrochemical measurement results reveal that Pd/Pd O H-NWs exhibit up to 94% CO Faraday efficiency with a current density of 11.6 m A cm^(-2) at an applied potential of -0.8 V. Meanwhile, Pd/Pd O H-NWs can achieve a stable catalytic process of 12 h for CO_(2) ER. Such outstanding CO_(2) ER performance of Pd/Pd O H-NWs has also been verified in the flow cell test. The density functional theory calculations indicate that Pd/Pd O heterostructure can significantly weaken the CO adsorption on Pd sites, which improves the CO tolerance and consequently enhances the catalytic performance of Pd/Pd O H-NWs for CO_(2) ER. This work highlights a facile complex pyrolysis strategy for the synthesis of Pd-based CO_(2) ER catalysts and provides a new application instance of metal/metal oxide heterostructure in electrocatalysis.