The crystal structure, magnetic and magnetocaloric properties of(Ho_(1-x) Y_(0.5))_5 Pd_2 compounds are investigated. All the compounds crystallize in a cubic Dy_5 Pd_2-type structure with the space group Fd3 m and un...The crystal structure, magnetic and magnetocaloric properties of(Ho_(1-x) Y_(0.5))_5 Pd_2 compounds are investigated. All the compounds crystallize in a cubic Dy_5 Pd_2-type structure with the space group Fd3 m and undergo a second order transition from spin glass(SG) state to paramagnetic(PM) state. The spin glass transition temperatures T_g decrease from 26 K for x = 0 to 13 K for x = 0.5. In the PM region, the reciprocal susceptibilities for all the compounds obey the Curie–Weiss law. The paramagnetic Curie temperatures(θp) for Ho_5 Pd_2,(Ho_(0.75) Y_(0.25)_5 Pd_2, and(Ho_(0.5) Y_(0.5))_5 Pd_2 are determined to be 32 K, 30 K, and 22 K, respectively, and the corresponding effective magnetic moments(μeff) are10.8 μB/Ho, 10.3 μB/RE, and 7.5 μB/RE, respectively. Magnetocaloric effect(MCE) is anticipated according to the Maxwell relation, based on the isothermal magnetization curves. For a magnetic field change of 0–5 T, the maximum values of the isothermal magnetic entropy change-?SMof the(Ho_(1-x)Y_x)_5 Pd_2(x = 0, 0.25, and 0.5) compounds are determined to be 11.5 J·kg^(-1)·K^(-1), 11.1 J·kg^(-1)·K^(-1), and 8.9 K J·kg^(-1)·K^(-1), with corresponding refrigerant capacity values of 382.3 J·kg^(-1), 336.2 J·kg^(-1), and 242.5 J·kg^(-1), respectively.展开更多
CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of Ce...CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2014CB643703)the National Key Research and Development Program of China(Grant No.2016YFB0700901)+1 种基金the National Natural Science Foundation of China(Grant Nos.51261004 and 51761007)Guangxi Natural Science Foundation,China(Grant No.2018GXNSFAA294051)
文摘The crystal structure, magnetic and magnetocaloric properties of(Ho_(1-x) Y_(0.5))_5 Pd_2 compounds are investigated. All the compounds crystallize in a cubic Dy_5 Pd_2-type structure with the space group Fd3 m and undergo a second order transition from spin glass(SG) state to paramagnetic(PM) state. The spin glass transition temperatures T_g decrease from 26 K for x = 0 to 13 K for x = 0.5. In the PM region, the reciprocal susceptibilities for all the compounds obey the Curie–Weiss law. The paramagnetic Curie temperatures(θp) for Ho_5 Pd_2,(Ho_(0.75) Y_(0.25)_5 Pd_2, and(Ho_(0.5) Y_(0.5))_5 Pd_2 are determined to be 32 K, 30 K, and 22 K, respectively, and the corresponding effective magnetic moments(μeff) are10.8 μB/Ho, 10.3 μB/RE, and 7.5 μB/RE, respectively. Magnetocaloric effect(MCE) is anticipated according to the Maxwell relation, based on the isothermal magnetization curves. For a magnetic field change of 0–5 T, the maximum values of the isothermal magnetic entropy change-?SMof the(Ho_(1-x)Y_x)_5 Pd_2(x = 0, 0.25, and 0.5) compounds are determined to be 11.5 J·kg^(-1)·K^(-1), 11.1 J·kg^(-1)·K^(-1), and 8.9 K J·kg^(-1)·K^(-1), with corresponding refrigerant capacity values of 382.3 J·kg^(-1), 336.2 J·kg^(-1), and 242.5 J·kg^(-1), respectively.
基金Supported by the National Natural Science Foundation of China(51204179,51204182,51674256)The Natural Science Foundation of Jiangsu Province,China(BK20141242)
文摘CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.