Richardson迭代法是求解ℳ张量多线性系统的一种有效方法。为了进一步加快其收敛速度,本文给出一个新的预处理子并提出一种新预处理Richardson迭代法。理论上证明所提预处理Richardson迭代法的收敛性。最后,通过数值例子验证该方法的有...Richardson迭代法是求解ℳ张量多线性系统的一种有效方法。为了进一步加快其收敛速度,本文给出一个新的预处理子并提出一种新预处理Richardson迭代法。理论上证明所提预处理Richardson迭代法的收敛性。最后,通过数值例子验证该方法的有效性和可行性。The Richardson iterative method is an effective method for solving multi-linear systems with ℳ-tensors. In this paper, a new preconditioner and new preconditioned Richardson iterative method are proposed to accelerate the convergence of multi-linear systems with ℳ-tensors. In the theory, the convergence of the preconditioned Richardson iterative method is proved. Finally, a numerical example is given to verify the effectiveness and feasibility of the proposed method.展开更多
文摘Richardson迭代法是求解ℳ张量多线性系统的一种有效方法。为了进一步加快其收敛速度,本文给出一个新的预处理子并提出一种新预处理Richardson迭代法。理论上证明所提预处理Richardson迭代法的收敛性。最后,通过数值例子验证该方法的有效性和可行性。The Richardson iterative method is an effective method for solving multi-linear systems with ℳ-tensors. In this paper, a new preconditioner and new preconditioned Richardson iterative method are proposed to accelerate the convergence of multi-linear systems with ℳ-tensors. In the theory, the convergence of the preconditioned Richardson iterative method is proved. Finally, a numerical example is given to verify the effectiveness and feasibility of the proposed method.