MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADSIO, were cloned using degenerate prime...MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADSIO, were cloned using degenerate primers and 5'- and T-RACE based on the sequence database of P. persiea and P. duleis. The full length of PpMADS1 cDNA is 1,071 bp containing an open reading frame (ORF) of 717 bp and coding for a polypeptide of 238 amino acid residues. The full length of PpMADSIO cDNA is 937 bp containing an ORF of 633 bp and coding for a polypeptide of 210 amino acid residues. Sequence comparison revealed that PpMADS1 and PpMADSIO were highly homologous to genes API and PI in Arabidopsis, respectively. Phylogenetic analysis indicated that PpMADS1 belongs to the euAP1 clade of class A, and PpMADSIO is a member of GLO/PI clade of class B. RT-PCR analysis showed that PpMADS1 was expressed in sepal, petal, carpel, and fruit, which was slightly different from the expression pattern ofAPl; PpMADS10 was expressed in petal and stamen, which shared the same expression pattern as PI. Using selective mapping strategy, PpMADSI was assigned onto the Binl:50 on the G1 linkage group between the markers MCO44 and TSA2, and PpMADSIO onto the Bin1:73 on the same linkage group between the markers Lap- 1 and FGA8. Our results provided the basis for further dissection of the two MADS box gene function.展开更多
Polygalacturonase (PG,EC3.2.1.15) is the key cell wall hydrolase in fruit ripening. The identification and characterization of a full length cDNA (pMT18) encoding for PG from Feicheng peach (Prunus persica (L.) Bat...Polygalacturonase (PG,EC3.2.1.15) is the key cell wall hydrolase in fruit ripening. The identification and characterization of a full length cDNA (pMT18) encoding for PG from Feicheng peach (Prunus persica (L.) Batsch cv. Feicheng) is described. The pMT18 clone is 1188 bp in length, with an open reading frame of 393 amino acids. The homology and phylogenetic analyses indicate a remarkable similarity between peach PG and other ripening related PG. And seven consensus sequences have revealed in peach PG compared to the PG from other plants. However, the profound divergence with other PG and the unique structure features suggest that peach PG probably belongs to a new evolutionary class. In RT PCR analysis, pMT18 related RNA was undetectable in leaves, and was much abundant in ripe fruits. The ripening specific expression pattern of this cDNA will be useful in investigating the roles of PG in fruit ripening and developing a transgenic peach with the improved post harvesting quality in the future.展开更多
Winter chill is essential for the growth and development of deciduous species. To understand the relationship between accumulated chilling hours during endodormancy and blooming and fruit shape development, we control...Winter chill is essential for the growth and development of deciduous species. To understand the relationship between accumulated chilling hours during endodormancy and blooming and fruit shape development, we controlled chilling hours and investigated their effects on blooming date and fruit shape of peaches. The results showed that the number of days to full bloom date and the heat requirement for blooming were negatively correlated with accumulated chilling hours. Accumulated chilling hours were significantly negatively correlated with fruit shape index and fruit tip lengths, suggesting that the number of chilling hours affect the fruit shape development. Fewer accumulated chilling hours may be the major reason for longer fruit shape and protruding fruit tips. In conclusion, our results indicate specifically that decreased winter chilling hours can delay the bloom date and may lead to aberrant fruit shape development in peaches. Our study provides preliminary insights into the response of temperate fruit species to global climate change.展开更多
A pot experiment was conducted to investigate the effects of nitrogen content [Nl (no fertilizer), N2 (0.15 g.kg-l), and N3 (0.3 g.kg 1)] on the growth and the hydraulic characteristics of peach seedlings under ...A pot experiment was conducted to investigate the effects of nitrogen content [Nl (no fertilizer), N2 (0.15 g.kg-l), and N3 (0.3 g.kg 1)] on the growth and the hydraulic characteristics of peach seedlings under different soil moisture conditions (Wl, W2 and W3, in which the soil water content was 45% to 55%, 60% to 70%, and 75% to 80% of the field water capacity, respectively) by using a specialized high pressure flow meter with a root chamber and a coupling, which was connected to plant organs. Leaf area and leaf hydraulic conductivity (KL) increased significantly in the seedlings because of increased soil moisture and N content. KL increased with leaf area. A linear correlation was documented between KL and leaf area. KL was higher in the morning and began to decline sharply after 16:00, at which KL declined after an initial increase. Soil moisture and N content enhanced shoot (Ks) and root (Kr) hydraulic conductivities, thereby improving the low soil moisture condition to a large extent. Ks and Kr of the seedlings were reduced by 32% and 27% respectively in N~, and by 14.7% and 9.4%, respectively in N2, and both in Wb compared with the control treatment. N3 had no significant effect on Ks and Kr under similar conditions. Linear negative correlations were observed between Kr and the excised root diameter as well as between Ks and the shoot stem diameter. The shoot-to-root ratio increased with in- crease in N content. The shoot-to-root ratio in N3 was increased by 14.37%, compared with N1 in W1 as well as by 12% and 4.39% in Wz and W3, respectively. Knowledge of the effects of soil moisture and N fertilizer on hydraulic characteristics and growth is important. Our results provide basic guidelines for the implementation of water-saving irrigation and fertilization management of nursery stock.展开更多
As the preferred nitrogen(N)source,ammonium(NH_(4)^(+))contributes to plant growth and development and fruit quality.In plants,NH 4+uptake is facilitated by a family of NH_(4)^(+) transporters(AMT).However,the molecul...As the preferred nitrogen(N)source,ammonium(NH_(4)^(+))contributes to plant growth and development and fruit quality.In plants,NH 4+uptake is facilitated by a family of NH_(4)^(+) transporters(AMT).However,the molecular mechanisms and functional characteristics of the AMT genes in peach have not been mentioned yet.In this present study,excess NH_(4)^(+) stress severely hindered shoot growth and root elongation,accompanied with reduced mineral accumulation,decreased leaf chlorophyll concentration,and stunned photosynthetic performance.In addition,we identified 14 putative AMT genes in peach(PpeAMT).Expression analysis showed that PpeAMT genes were differently expressed in peach leaves,stems and roots,and were distinctly regulated by external NH_(4)^(+) supplies.Putative cis-elements involved in abiotic stress adaption,Ca^(2+) response,light and circadian rhythms regulation,and seed development were observed in the promoters of the PpeAMT family genes.Phosphorylation analysis of residues within the C-terminal of PpeAMT proteins revealed many conserved phosphorylation residues in both the AMT1 and AMT2 subfamily members,which could potentially play roles in controlling the NH 4+transport activities.This study provides gene resources to study the biological function of AMT proteins in peach,and reveals molecular basis for NH_(4)^(+) uptake and N nutrition mechanisms of fruit trees.展开更多
Because there are thousands of peach cultivars,cultivar classification is a critical step before starting a breeding project.Various molecular markers such as simple sequence repeats(SSRs)can be used.In this study,67 ...Because there are thousands of peach cultivars,cultivar classification is a critical step before starting a breeding project.Various molecular markers such as simple sequence repeats(SSRs)can be used.In this study,67 polymorphic primers produced 302 bands.Higher values for SI index(1.903)suggested higher genetic variability in the genotype under investigation.Mean values for observed alleles(Na),expected heterozygosity(He),effective alleles(Ne),Nei’s information index(h),and polymorphic information content(PIC)were 4.5,0.83,5.45,0.83,and 0.81,respectively.The dendrogram constructed based on Jaccard’s similarity coefficients outlined four distinct clusters in the entire germplasm.In addition,an analysis of molecular variance(AMOVA)showed that70.68%of the total variation was due to within-population variation,while 29.32%was due to variation among populations.According to this research,all primers were successfully used for the peach accessions.The EST-SSR markers should be useful in peach breeding programs and other research.展开更多
Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural charact...Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural characteristics of phloem tissues of source leaves were observed and compared in normal and weak light intensities using the transmission electron microscopy. Results showed that the average diameters of companion cells (CC) and sieve elements (SE) of all kinds of veins were bigger in normal than that in weak light intensity, indicating that light could influence the cell development and growth. Dense cytoplasm with abundant mitochondria, endoplasmic reticulums, multivesicular bodies, vesicles and plastids were observed in normal light intensity. On the contrary, CC with small vacuolar structures and few mitochondrias, endoplasmic reticulums were shown in weak light. Misalignment of grana thylakoid margins of nectarine leaves also was seen in weak light. The sieve pores of SEs were obstructed in weak light. Chloroplasts with numerous starch grains and few mitochondrias were noticed in the mesophyll cell (MES) surrounding the bundle sheath in weak light. The storage of starch grains appeared to result from an unbalance between photosynthate production and export of photosynthates. This observation provided a strong support to the point that most leaves export the most of assimilates in the light time. Plasmodesmal densities between SE/CC, CC/PP (phloem parenchyma cell), PP/PP and PP/BSC (bundle_sheath cell) decreased in weak light. Plasmodesmata were observed between CC/SE (NS) (nacreous_walled sieve element), PP/BSC in branch veins in normal light intensity, but not in weak light. Thus apoplasmic pathway may be the main mode of transport of assimilates in weak light, however symplasmic pathway may be the main mode of transport of assimilates in normal light intensity. These results demonstrated that the solar greenhouse nectarine trees could be adapted to the weak light via the ultrastructure variation of phloem tissues of the source leaves.展开更多
[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as p...[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as parents to construct F1 orthogonal group. A total of 138 FI individuals were selected as experimental materi- als for construction of color around the stone gene pool (B1) and non-color around the stone gene pool (B2) by using bulked segregant analysis (BSA) method, molec- ular markers linked to the flesh color around the stone of P. persica (L.) Batsch were selected with SSR molecular marker technology. [Result] After selection with 256 pairs of SSR primers, three pairs of molecular markers linked to the gene con- trolling flesh color around the stone of P. persica (L.) Batsch were selected (UDP96- 003, ch04g09 and UDP97-402). In addition, genetic distances between the three molecular markers and the gene controlling flesh color around the stone of P. persi- ca (L.) Batsch were calculated, which were 16.7, 10.1 and 17.0 cM, respectively. [Conclusion] This study laid the foundation for further selection of co-dominant molecular markers with closer genetic distance.展开更多
[Objective] The aim was to study the molecular identification and cultivar fingerprints of Prunus persica (L.) Batsch germplasms.[Method] Sixty peach genotypes,representing China common local cultivars and European sa...[Objective] The aim was to study the molecular identification and cultivar fingerprints of Prunus persica (L.) Batsch germplasms.[Method] Sixty peach genotypes,representing China common local cultivars and European samples were screened by microsatellites (simple sequence repeats,SSRs) and Inter-Simple Sequence Repeat (ISSR) markers.[Result] 26 reproducible bands were amplified by Nine SSR primers,and 24 of which were polymorphic; 236 bands were amplified by 30 ISSR primers,and 113 of which were polymorphic.31 genotypes were discriminated with 1-3 distinct polymorphic bands generated from the primers ISSR and SSR.Seven cultivar-specific ISSR fragments and two SSR unique alleles obtained from this study were available to be converted into Sequence Characterized Amplified Region (SCAR) markers.The genetic similarity coefficient (GS) estimated from these molecular data averaged were 0.939 (ranged from 0.856 to 0.983) for ISSR and 0.646 (ranged from 0.240 to 1.000) for SSR,respectively.The combined grouping association indicated that most local Chinese peach cultivars and exotic accessions were clustered together.This could be related to the mode of introduction and maintenance of the peach cultivars involving limited foundation germplasm,exchange of cultivars between plantations,and periodic development of new recombinant cultivars following sexual reproduction.[Conclusion] The results obtained in this work would help to improve the conservation,molecular identification and management of peach germplasm in breeding.展开更多
Object: To investigate the VOCs from living Prunus persica flowers of different branches and their correlation with floral insects. Special, dominant and 20 VOCs were analysed from living Prunus persica flowers captur...Object: To investigate the VOCs from living Prunus persica flowers of different branches and their correlation with floral insects. Special, dominant and 20 VOCs were analysed from living Prunus persica flowers captured by closely and circularly headspace way in adsorbent tubes and ATD-GC/MS on 29 April in Wanbailin Ecological Garden, China. VOCs from high altitude tree are more than low altitude in sunny site, and floral volatile constituents from upslope branches are less than downslope of the same tree on high altitude. Special floral VOCs were alpha-dimethyl-benzenemethanol, isopropyl palmitate, ethylbenzene, p-xylene, acetophenone, 3-ethyl-2-methyl-Heptane on sunny slope, and propylene glycol, decanal, hexadecane on shady slope. Dominant VOCs founded during 8 temporal quanta were toluene, hexane, 2-ethyl-1-hexanol, dodecane, pentadecane. Floral VOCs’ number from sunny slope was significantly negative correlated with flower-visiting insect community richness, abundance, diversity on sunny or shady slope, which from shady slope was significantly positive correlated with flower-visiting insect community parameters on both slopes tried dividing insects visiting floral branches from Prunus persica in sunny site with n/2 + 1 or n/2 - 1, and shady site with n/2 before sampled volatiles day. On sampled volatiles day, 2-ethyl-1-hexanol from sunny slope was significantly positive correlated with flower-visiting insect community parameters on shady slope (P Prunus persica on sunny slope, and even floral branches kept on shady slope.展开更多
Production of peaches(Prunus persica(L.)Batsch)for both local market and export is increasing each year in Egypt.Brown rot disease,caused by Monilinia laxa and Monilinia fructigena,is considered one of the most import...Production of peaches(Prunus persica(L.)Batsch)for both local market and export is increasing each year in Egypt.Brown rot disease,caused by Monilinia laxa and Monilinia fructigena,is considered one of the most important postharvest rots affecting peaches in Egypt and economic losses are increasing.Antifungal activity of glycyrrhizic acid nanoparticles(GA-NPs)and glycyrrhizic acid(GA)at 0.2 and 0.4 mmol/L was investigated as a control for both these brown rot pathogens on peach fruits in both in vitro and in vivo studies.In the in vitro studies,GA-NPs were the most effective as shown by the ability to decrease linear growth of both brown rot pathogens in potato dextrose agar(PDA)amended with 0.4 mmol/L GA-NPs.Micrographs of M.fructigena exposed to 0.4 mmol/LGA showed mycelial deformations,nodule formation,detachment of the cell wall,shrinkage and inhomogeneous cytoplasmic materials with large vacuoles.Mycelium of M.laxa exposed to 0.4 mmol/LGA-NPs resulted in thinner and distorted hyphae,nodule formation,cell wall thinning,and swellings.The GANPs and GA treatments improved fruit quality by maintaining firmness and total soluble solids(TSS).GA-NPs were more effective in decreasing decay incidence than their bulk material.The 0.4 mmol/L GA-NPs completely inhibited the disease on naturally infected peach fruits for both seasons of 2018 and 2019.Furthermore,0.4 mmol/L GA-NPs reduced the disease incidence in inoculated fruits by 95(M.laxa)and 88%(M.fructigena)in 2018 season and 96(M.laxa)and 85%(M.fructigena)in 2019 season.In conclusion,GA-NPs could enhance the resistance of peaches against brown rot caused by M.laxa and M.fructigena.展开更多
Shikimic acid/quinic acid hydroxy cinnamyl transferase(HCT)is one of the key enzymes in the phenylpropanoid pathway.However,the role of the HCT gene in chlorogenic acid(CGA)biosynthesis in peach fruit remains unclear....Shikimic acid/quinic acid hydroxy cinnamyl transferase(HCT)is one of the key enzymes in the phenylpropanoid pathway.However,the role of the HCT gene in chlorogenic acid(CGA)biosynthesis in peach fruit remains unclear.For this,we identified the accumulation pattern of CGA in four peach cultivars,cloned and characterized 11 PpHCT gene members,and further analyzed the expression patterns of these PpHCT genes during fruit development.The contents of CGAs in the four peach cultivars all exhibited a trend of increasing and then decreasing during the fruit growth and development.Moreover,the contents of CGAs in the peel and flesh were tissue-specific.Gene structure analysis indicated that the PpHCT genes were highly conserved,containing two exons and one intron.The protein structure analysis demonstrated that the PpHCT proteins contained two conserved motifs(HXXXD,DFGWG)and a transferase domain(PF02458),which belonged to the BAHD acyltransferase family.The cis-acting element analysis suggested that the promoters of PpHCT genes contained many light-related,hormone-related,stress-related,tissue-specific,and circadian-related elements,and they could participate in a variety of biological processes.Phylogenetic analysis showed that the HCT proteins of peach were closely related to the HCT proteins of plum and had a close evolutionary relationship.The qRT-PCR analysis indicated that the expression levels of PpHCT1 and PpHCT2 showed an opposite trend to the accumulation of CGA,whereas the expression levels of PpHCT4,PpHCT5,PpHCT7,PpHCT8,and PpHCT11 demonstrated the same trend as CGA accumulation.It was worth noting that only PpHCT4 and PpHCT5 were highly expressed in the two high-CGA cultivars but showed low levels of expression in the two low-CGA cultivars.Therefore,it was hypothesized that these two genes might be key genes to the synthesis of CGA in peach fruit.Those findings provide a theoretical basis for further study on the biological functions of the HCT gene and help to reveal the molecular mechanism of CGA.展开更多
基金supported by the National Natural Science Foundation of China(No.30500395)the National High Technology Research and Development Program(863 Projects)of China(No.2006AA10Z130 and 2006AA100108-3-7).
文摘MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADSIO, were cloned using degenerate primers and 5'- and T-RACE based on the sequence database of P. persiea and P. duleis. The full length of PpMADS1 cDNA is 1,071 bp containing an open reading frame (ORF) of 717 bp and coding for a polypeptide of 238 amino acid residues. The full length of PpMADSIO cDNA is 937 bp containing an ORF of 633 bp and coding for a polypeptide of 210 amino acid residues. Sequence comparison revealed that PpMADS1 and PpMADSIO were highly homologous to genes API and PI in Arabidopsis, respectively. Phylogenetic analysis indicated that PpMADS1 belongs to the euAP1 clade of class A, and PpMADSIO is a member of GLO/PI clade of class B. RT-PCR analysis showed that PpMADS1 was expressed in sepal, petal, carpel, and fruit, which was slightly different from the expression pattern ofAPl; PpMADS10 was expressed in petal and stamen, which shared the same expression pattern as PI. Using selective mapping strategy, PpMADSI was assigned onto the Binl:50 on the G1 linkage group between the markers MCO44 and TSA2, and PpMADSIO onto the Bin1:73 on the same linkage group between the markers Lap- 1 and FGA8. Our results provided the basis for further dissection of the two MADS box gene function.
文摘Polygalacturonase (PG,EC3.2.1.15) is the key cell wall hydrolase in fruit ripening. The identification and characterization of a full length cDNA (pMT18) encoding for PG from Feicheng peach (Prunus persica (L.) Batsch cv. Feicheng) is described. The pMT18 clone is 1188 bp in length, with an open reading frame of 393 amino acids. The homology and phylogenetic analyses indicate a remarkable similarity between peach PG and other ripening related PG. And seven consensus sequences have revealed in peach PG compared to the PG from other plants. However, the profound divergence with other PG and the unique structure features suggest that peach PG probably belongs to a new evolutionary class. In RT PCR analysis, pMT18 related RNA was undetectable in leaves, and was much abundant in ripe fruits. The ripening specific expression pattern of this cDNA will be useful in investigating the roles of PG in fruit ripening and developing a transgenic peach with the improved post harvesting quality in the future.
基金supported by the grants from the Agricultural Science and Technology Innovation Program, China (CAAS-ASTIP-2015-ZFRI)the Comprehensive Experimental Station of Zhengzhou of China Agriculture Research System (CARS-31-Z-10)
文摘Winter chill is essential for the growth and development of deciduous species. To understand the relationship between accumulated chilling hours during endodormancy and blooming and fruit shape development, we controlled chilling hours and investigated their effects on blooming date and fruit shape of peaches. The results showed that the number of days to full bloom date and the heat requirement for blooming were negatively correlated with accumulated chilling hours. Accumulated chilling hours were significantly negatively correlated with fruit shape index and fruit tip lengths, suggesting that the number of chilling hours affect the fruit shape development. Fewer accumulated chilling hours may be the major reason for longer fruit shape and protruding fruit tips. In conclusion, our results indicate specifically that decreased winter chilling hours can delay the bloom date and may lead to aberrant fruit shape development in peaches. Our study provides preliminary insights into the response of temperate fruit species to global climate change.
基金supported by the Chinese National Natural Science Fund(Grant No.50579066,50879073)Provincial Education Department Projects(11ZA072)
文摘A pot experiment was conducted to investigate the effects of nitrogen content [Nl (no fertilizer), N2 (0.15 g.kg-l), and N3 (0.3 g.kg 1)] on the growth and the hydraulic characteristics of peach seedlings under different soil moisture conditions (Wl, W2 and W3, in which the soil water content was 45% to 55%, 60% to 70%, and 75% to 80% of the field water capacity, respectively) by using a specialized high pressure flow meter with a root chamber and a coupling, which was connected to plant organs. Leaf area and leaf hydraulic conductivity (KL) increased significantly in the seedlings because of increased soil moisture and N content. KL increased with leaf area. A linear correlation was documented between KL and leaf area. KL was higher in the morning and began to decline sharply after 16:00, at which KL declined after an initial increase. Soil moisture and N content enhanced shoot (Ks) and root (Kr) hydraulic conductivities, thereby improving the low soil moisture condition to a large extent. Ks and Kr of the seedlings were reduced by 32% and 27% respectively in N~, and by 14.7% and 9.4%, respectively in N2, and both in Wb compared with the control treatment. N3 had no significant effect on Ks and Kr under similar conditions. Linear negative correlations were observed between Kr and the excised root diameter as well as between Ks and the shoot stem diameter. The shoot-to-root ratio increased with in- crease in N content. The shoot-to-root ratio in N3 was increased by 14.37%, compared with N1 in W1 as well as by 12% and 4.39% in Wz and W3, respectively. Knowledge of the effects of soil moisture and N fertilizer on hydraulic characteristics and growth is important. Our results provide basic guidelines for the implementation of water-saving irrigation and fertilization management of nursery stock.
基金This work was supported by the National Key R&D Program of China(2019YFD1000500,2016YFD0600106)China Agriculture Research System(CARS-29-16),the Agricultural Variety Improvement Project of Shandong Province(2019LZGC009)the Key R&D Program of Shandong Province(GG201809260221,2019GSF1070952,018JHZ006).
文摘As the preferred nitrogen(N)source,ammonium(NH_(4)^(+))contributes to plant growth and development and fruit quality.In plants,NH 4+uptake is facilitated by a family of NH_(4)^(+) transporters(AMT).However,the molecular mechanisms and functional characteristics of the AMT genes in peach have not been mentioned yet.In this present study,excess NH_(4)^(+) stress severely hindered shoot growth and root elongation,accompanied with reduced mineral accumulation,decreased leaf chlorophyll concentration,and stunned photosynthetic performance.In addition,we identified 14 putative AMT genes in peach(PpeAMT).Expression analysis showed that PpeAMT genes were differently expressed in peach leaves,stems and roots,and were distinctly regulated by external NH_(4)^(+) supplies.Putative cis-elements involved in abiotic stress adaption,Ca^(2+) response,light and circadian rhythms regulation,and seed development were observed in the promoters of the PpeAMT family genes.Phosphorylation analysis of residues within the C-terminal of PpeAMT proteins revealed many conserved phosphorylation residues in both the AMT1 and AMT2 subfamily members,which could potentially play roles in controlling the NH 4+transport activities.This study provides gene resources to study the biological function of AMT proteins in peach,and reveals molecular basis for NH_(4)^(+) uptake and N nutrition mechanisms of fruit trees.
基金The work was supported by Payme-Noor University of Tehran,Iran and Shahid Chamran University of Ahvaz(AG1396-Grant_Faculty of Agriculture).
文摘Because there are thousands of peach cultivars,cultivar classification is a critical step before starting a breeding project.Various molecular markers such as simple sequence repeats(SSRs)can be used.In this study,67 polymorphic primers produced 302 bands.Higher values for SI index(1.903)suggested higher genetic variability in the genotype under investigation.Mean values for observed alleles(Na),expected heterozygosity(He),effective alleles(Ne),Nei’s information index(h),and polymorphic information content(PIC)were 4.5,0.83,5.45,0.83,and 0.81,respectively.The dendrogram constructed based on Jaccard’s similarity coefficients outlined four distinct clusters in the entire germplasm.In addition,an analysis of molecular variance(AMOVA)showed that70.68%of the total variation was due to within-population variation,while 29.32%was due to variation among populations.According to this research,all primers were successfully used for the peach accessions.The EST-SSR markers should be useful in peach breeding programs and other research.
文摘Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural characteristics of phloem tissues of source leaves were observed and compared in normal and weak light intensities using the transmission electron microscopy. Results showed that the average diameters of companion cells (CC) and sieve elements (SE) of all kinds of veins were bigger in normal than that in weak light intensity, indicating that light could influence the cell development and growth. Dense cytoplasm with abundant mitochondria, endoplasmic reticulums, multivesicular bodies, vesicles and plastids were observed in normal light intensity. On the contrary, CC with small vacuolar structures and few mitochondrias, endoplasmic reticulums were shown in weak light. Misalignment of grana thylakoid margins of nectarine leaves also was seen in weak light. The sieve pores of SEs were obstructed in weak light. Chloroplasts with numerous starch grains and few mitochondrias were noticed in the mesophyll cell (MES) surrounding the bundle sheath in weak light. The storage of starch grains appeared to result from an unbalance between photosynthate production and export of photosynthates. This observation provided a strong support to the point that most leaves export the most of assimilates in the light time. Plasmodesmal densities between SE/CC, CC/PP (phloem parenchyma cell), PP/PP and PP/BSC (bundle_sheath cell) decreased in weak light. Plasmodesmata were observed between CC/SE (NS) (nacreous_walled sieve element), PP/BSC in branch veins in normal light intensity, but not in weak light. Thus apoplasmic pathway may be the main mode of transport of assimilates in weak light, however symplasmic pathway may be the main mode of transport of assimilates in normal light intensity. These results demonstrated that the solar greenhouse nectarine trees could be adapted to the weak light via the ultrastructure variation of phloem tissues of the source leaves.
基金Supported by Fund of Hebei Academy of Agriculture and Forestry Sciences(A06120203)~~
文摘[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as parents to construct F1 orthogonal group. A total of 138 FI individuals were selected as experimental materi- als for construction of color around the stone gene pool (B1) and non-color around the stone gene pool (B2) by using bulked segregant analysis (BSA) method, molec- ular markers linked to the flesh color around the stone of P. persica (L.) Batsch were selected with SSR molecular marker technology. [Result] After selection with 256 pairs of SSR primers, three pairs of molecular markers linked to the gene con- trolling flesh color around the stone of P. persica (L.) Batsch were selected (UDP96- 003, ch04g09 and UDP97-402). In addition, genetic distances between the three molecular markers and the gene controlling flesh color around the stone of P. persi- ca (L.) Batsch were calculated, which were 16.7, 10.1 and 17.0 cM, respectively. [Conclusion] This study laid the foundation for further selection of co-dominant molecular markers with closer genetic distance.
基金Supported by National Peach Industrial Technology System (nycytx-31-zs-10 )National Science and Technology Support Program (2008BAD98B03-08)+1 种基金National Peach Commonweal Science (Agriculture) Research Projects (3-37)Chengdu Technology Application and Promotion Program (09YTZD986NC-012)
文摘[Objective] The aim was to study the molecular identification and cultivar fingerprints of Prunus persica (L.) Batsch germplasms.[Method] Sixty peach genotypes,representing China common local cultivars and European samples were screened by microsatellites (simple sequence repeats,SSRs) and Inter-Simple Sequence Repeat (ISSR) markers.[Result] 26 reproducible bands were amplified by Nine SSR primers,and 24 of which were polymorphic; 236 bands were amplified by 30 ISSR primers,and 113 of which were polymorphic.31 genotypes were discriminated with 1-3 distinct polymorphic bands generated from the primers ISSR and SSR.Seven cultivar-specific ISSR fragments and two SSR unique alleles obtained from this study were available to be converted into Sequence Characterized Amplified Region (SCAR) markers.The genetic similarity coefficient (GS) estimated from these molecular data averaged were 0.939 (ranged from 0.856 to 0.983) for ISSR and 0.646 (ranged from 0.240 to 1.000) for SSR,respectively.The combined grouping association indicated that most local Chinese peach cultivars and exotic accessions were clustered together.This could be related to the mode of introduction and maintenance of the peach cultivars involving limited foundation germplasm,exchange of cultivars between plantations,and periodic development of new recombinant cultivars following sexual reproduction.[Conclusion] The results obtained in this work would help to improve the conservation,molecular identification and management of peach germplasm in breeding.
文摘Object: To investigate the VOCs from living Prunus persica flowers of different branches and their correlation with floral insects. Special, dominant and 20 VOCs were analysed from living Prunus persica flowers captured by closely and circularly headspace way in adsorbent tubes and ATD-GC/MS on 29 April in Wanbailin Ecological Garden, China. VOCs from high altitude tree are more than low altitude in sunny site, and floral volatile constituents from upslope branches are less than downslope of the same tree on high altitude. Special floral VOCs were alpha-dimethyl-benzenemethanol, isopropyl palmitate, ethylbenzene, p-xylene, acetophenone, 3-ethyl-2-methyl-Heptane on sunny slope, and propylene glycol, decanal, hexadecane on shady slope. Dominant VOCs founded during 8 temporal quanta were toluene, hexane, 2-ethyl-1-hexanol, dodecane, pentadecane. Floral VOCs’ number from sunny slope was significantly negative correlated with flower-visiting insect community richness, abundance, diversity on sunny or shady slope, which from shady slope was significantly positive correlated with flower-visiting insect community parameters on both slopes tried dividing insects visiting floral branches from Prunus persica in sunny site with n/2 + 1 or n/2 - 1, and shady site with n/2 before sampled volatiles day. On sampled volatiles day, 2-ethyl-1-hexanol from sunny slope was significantly positive correlated with flower-visiting insect community parameters on shady slope (P Prunus persica on sunny slope, and even floral branches kept on shady slope.
文摘Production of peaches(Prunus persica(L.)Batsch)for both local market and export is increasing each year in Egypt.Brown rot disease,caused by Monilinia laxa and Monilinia fructigena,is considered one of the most important postharvest rots affecting peaches in Egypt and economic losses are increasing.Antifungal activity of glycyrrhizic acid nanoparticles(GA-NPs)and glycyrrhizic acid(GA)at 0.2 and 0.4 mmol/L was investigated as a control for both these brown rot pathogens on peach fruits in both in vitro and in vivo studies.In the in vitro studies,GA-NPs were the most effective as shown by the ability to decrease linear growth of both brown rot pathogens in potato dextrose agar(PDA)amended with 0.4 mmol/L GA-NPs.Micrographs of M.fructigena exposed to 0.4 mmol/LGA showed mycelial deformations,nodule formation,detachment of the cell wall,shrinkage and inhomogeneous cytoplasmic materials with large vacuoles.Mycelium of M.laxa exposed to 0.4 mmol/LGA-NPs resulted in thinner and distorted hyphae,nodule formation,cell wall thinning,and swellings.The GANPs and GA treatments improved fruit quality by maintaining firmness and total soluble solids(TSS).GA-NPs were more effective in decreasing decay incidence than their bulk material.The 0.4 mmol/L GA-NPs completely inhibited the disease on naturally infected peach fruits for both seasons of 2018 and 2019.Furthermore,0.4 mmol/L GA-NPs reduced the disease incidence in inoculated fruits by 95(M.laxa)and 88%(M.fructigena)in 2018 season and 96(M.laxa)and 85%(M.fructigena)in 2019 season.In conclusion,GA-NPs could enhance the resistance of peaches against brown rot caused by M.laxa and M.fructigena.
基金supported by the funds of the Natural Science Foundation of Jiangsu Province(Grant No.BK20200278)the China Agriculture Research System(Grant No.CARS-30)+1 种基金the Species Conservation Project of Ministry of Agriculture and Rural Affair(Grant No.19210137)the National Crop Germplasm Resources Infrastructure in China(Grant No.NHGRC2021-NH16).
文摘Shikimic acid/quinic acid hydroxy cinnamyl transferase(HCT)is one of the key enzymes in the phenylpropanoid pathway.However,the role of the HCT gene in chlorogenic acid(CGA)biosynthesis in peach fruit remains unclear.For this,we identified the accumulation pattern of CGA in four peach cultivars,cloned and characterized 11 PpHCT gene members,and further analyzed the expression patterns of these PpHCT genes during fruit development.The contents of CGAs in the four peach cultivars all exhibited a trend of increasing and then decreasing during the fruit growth and development.Moreover,the contents of CGAs in the peel and flesh were tissue-specific.Gene structure analysis indicated that the PpHCT genes were highly conserved,containing two exons and one intron.The protein structure analysis demonstrated that the PpHCT proteins contained two conserved motifs(HXXXD,DFGWG)and a transferase domain(PF02458),which belonged to the BAHD acyltransferase family.The cis-acting element analysis suggested that the promoters of PpHCT genes contained many light-related,hormone-related,stress-related,tissue-specific,and circadian-related elements,and they could participate in a variety of biological processes.Phylogenetic analysis showed that the HCT proteins of peach were closely related to the HCT proteins of plum and had a close evolutionary relationship.The qRT-PCR analysis indicated that the expression levels of PpHCT1 and PpHCT2 showed an opposite trend to the accumulation of CGA,whereas the expression levels of PpHCT4,PpHCT5,PpHCT7,PpHCT8,and PpHCT11 demonstrated the same trend as CGA accumulation.It was worth noting that only PpHCT4 and PpHCT5 were highly expressed in the two high-CGA cultivars but showed low levels of expression in the two low-CGA cultivars.Therefore,it was hypothesized that these two genes might be key genes to the synthesis of CGA in peach fruit.Those findings provide a theoretical basis for further study on the biological functions of the HCT gene and help to reveal the molecular mechanism of CGA.