[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as p...[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as parents to construct F1 orthogonal group. A total of 138 FI individuals were selected as experimental materi- als for construction of color around the stone gene pool (B1) and non-color around the stone gene pool (B2) by using bulked segregant analysis (BSA) method, molec- ular markers linked to the flesh color around the stone of P. persica (L.) Batsch were selected with SSR molecular marker technology. [Result] After selection with 256 pairs of SSR primers, three pairs of molecular markers linked to the gene con- trolling flesh color around the stone of P. persica (L.) Batsch were selected (UDP96- 003, ch04g09 and UDP97-402). In addition, genetic distances between the three molecular markers and the gene controlling flesh color around the stone of P. persi- ca (L.) Batsch were calculated, which were 16.7, 10.1 and 17.0 cM, respectively. [Conclusion] This study laid the foundation for further selection of co-dominant molecular markers with closer genetic distance.展开更多
[Objective] The aim was to study the molecular identification and cultivar fingerprints of Prunus persica (L.) Batsch germplasms.[Method] Sixty peach genotypes,representing China common local cultivars and European sa...[Objective] The aim was to study the molecular identification and cultivar fingerprints of Prunus persica (L.) Batsch germplasms.[Method] Sixty peach genotypes,representing China common local cultivars and European samples were screened by microsatellites (simple sequence repeats,SSRs) and Inter-Simple Sequence Repeat (ISSR) markers.[Result] 26 reproducible bands were amplified by Nine SSR primers,and 24 of which were polymorphic; 236 bands were amplified by 30 ISSR primers,and 113 of which were polymorphic.31 genotypes were discriminated with 1-3 distinct polymorphic bands generated from the primers ISSR and SSR.Seven cultivar-specific ISSR fragments and two SSR unique alleles obtained from this study were available to be converted into Sequence Characterized Amplified Region (SCAR) markers.The genetic similarity coefficient (GS) estimated from these molecular data averaged were 0.939 (ranged from 0.856 to 0.983) for ISSR and 0.646 (ranged from 0.240 to 1.000) for SSR,respectively.The combined grouping association indicated that most local Chinese peach cultivars and exotic accessions were clustered together.This could be related to the mode of introduction and maintenance of the peach cultivars involving limited foundation germplasm,exchange of cultivars between plantations,and periodic development of new recombinant cultivars following sexual reproduction.[Conclusion] The results obtained in this work would help to improve the conservation,molecular identification and management of peach germplasm in breeding.展开更多
The aim of the present experiment was to study the relationship between the distribution of relative light intensity in canopy and yield and quality of Wanmi peach. The optimum relative canopy light intensity was judg...The aim of the present experiment was to study the relationship between the distribution of relative light intensity in canopy and yield and quality of Wanmi peach. The optimum relative canopy light intensity was judged to be 36.3% for high quality peaches, when canopy volumes of Wanmi peach trees with a relative light intensity 〈 30% accounted for 7.7 and 47.9% of the total canopy volume in June and September, respectively. The canopy volume with a relative light intensity 〉 80% was 27.7 and 3.1% of the total canopy volume in June and September, respectively. Peach canopies were divided into 0.5 m × 0.5 m × 0.5 m cubes, with the relative light intensity being measured at different positions of the canopy during the growing season. Yield and fruit quality were also measured at these positions at harvest. The results showed that the relative light intensity decreased gradually from outside to inside and from top to bottom of the tree canopy. Fruit were mainly distributed in the upper and middle portions of the canopy, 1.5-3.0 m above ground. Regression results showed that single fruit weight and soluble solid content were positively related to relative light intensity.展开更多
Taking Yihong,the main cultivar of mid-ripening honey peaches(Prunus persica)in Hunan,as material,this study explored the effects of different storage methods on the fruit quality and physiological changes in Yihong h...Taking Yihong,the main cultivar of mid-ripening honey peaches(Prunus persica)in Hunan,as material,this study explored the effects of different storage methods on the fruit quality and physiological changes in Yihong honey peach by the combination of polyethylene film packaging with low-temperature storage.The results showed that the weight loss rate of packaged storage at normal temperature(T1)was significantly lower than that of unpackaged storage at normal temperature(CK),but there was no significant difference in other indicators.In the middle of storage,the respiration rate and ethylene release of packaged storage at 0℃(T3)were extremely significantly lower or significantly lower than those of unpackaged storage at 0℃(T2),packaged storage at 0℃after cold adapting at 8℃for 5 d(T4),and packaged storage in a fluctuating temperature range of 0~3.5℃(T5).After storage,the structure of the middle lamella in the cell wall of T3 was compact and uniform,and the mitochondrial structure was complete,while the cell walls and mitochondria of T4 and T5 were severely deformed and disintegrated.The activities of antioxidant enzymes peroxidase(POD)and superoxide dismutase(SOD)of T3 was significantly higher than those of T4 and T5,and the content of malondialdehyde(MDA)and polyphenol oxidase(PPO)of T3 was also the lowest.Therefore,0°C packaged storage can effectively delay the senescence of Yihong honey peach and prolong its freshness period.展开更多
This study was conducted to assess the effect of gibberellin and its possible mechanism of action on peach flower formation. At flower induction, 100 mg L^-1 of gibberellic acid 3 (GA3) was sprayed on the leaves of ...This study was conducted to assess the effect of gibberellin and its possible mechanism of action on peach flower formation. At flower induction, 100 mg L^-1 of gibberellic acid 3 (GA3) was sprayed on the leaves of peach [Prunus persica (L.) Batsch.] cv. Bayuecui. Using anatomy, immunohistochemistry, and semi-quantitation, the in situ distribution of GAs and the expression of the key genes involved in peach flower formation in the apical meristem were studied during flowering differentiation. The results showed that induction of flowering in the Bayuecui peach occurred prior to 10 July in Beijing, China. Flower induction and further differentiation of the peach flower organs were significantly inhibited by leaf-spraying of GA3 at a concentration of 100 mg L^-1 during the induction stage. The flowering rate was only 11.67% after treatment. The distribution of GA1 in the apical meristem varied during the process of flower bud differentiation. From 13 June to 25 July, the GA1 signal from control plants was detected mainly in the vascular bundles at the base of the flower buds. No GA1 signal was detected in the apical meristem. After treatment with GA3, the distribution was similar to that of the control from 13 June to 3 July. On 13 July, a GA1 signal was detected in the apical meristem accompanied by an increase in the GA1 signal in the vascular bundles at the base of the flower buds. The GA1 signal weakened significantly in both the vascular bundles and the apical meristem on 25 July. The expression of the genes PpLEAFY and MADS6 in flower buds could be detected only on 10 October in the GA3-treated plants. The critical period for flower induction of Bayuecui peach in Beijing was in early July, during which time, leaf-spraying with 100 mg L-1 GA3 could effectively inhibit flower induction and further differentiation of the flower buds. GA1 in the gibberellin family was the suppressor for flower induction in peach. Its action was affected by the stage of flower bud differentiation. Expression of the key genes PpLEAFY and MADS6 involved in flower formation was inhibited by GA3 treatment.展开更多
基金Supported by Fund of Hebei Academy of Agriculture and Forestry Sciences(A06120203)~~
文摘[Objective] This study aimed to select SSR molecular markers linked to flesh color around the stone of Prunus persica (L.) Batsch. [Method] P. persica (L.) Batsch varieties Chongyanghong and Yanhong were used as parents to construct F1 orthogonal group. A total of 138 FI individuals were selected as experimental materi- als for construction of color around the stone gene pool (B1) and non-color around the stone gene pool (B2) by using bulked segregant analysis (BSA) method, molec- ular markers linked to the flesh color around the stone of P. persica (L.) Batsch were selected with SSR molecular marker technology. [Result] After selection with 256 pairs of SSR primers, three pairs of molecular markers linked to the gene con- trolling flesh color around the stone of P. persica (L.) Batsch were selected (UDP96- 003, ch04g09 and UDP97-402). In addition, genetic distances between the three molecular markers and the gene controlling flesh color around the stone of P. persi- ca (L.) Batsch were calculated, which were 16.7, 10.1 and 17.0 cM, respectively. [Conclusion] This study laid the foundation for further selection of co-dominant molecular markers with closer genetic distance.
基金Supported by National Peach Industrial Technology System (nycytx-31-zs-10 )National Science and Technology Support Program (2008BAD98B03-08)+1 种基金National Peach Commonweal Science (Agriculture) Research Projects (3-37)Chengdu Technology Application and Promotion Program (09YTZD986NC-012)
文摘[Objective] The aim was to study the molecular identification and cultivar fingerprints of Prunus persica (L.) Batsch germplasms.[Method] Sixty peach genotypes,representing China common local cultivars and European samples were screened by microsatellites (simple sequence repeats,SSRs) and Inter-Simple Sequence Repeat (ISSR) markers.[Result] 26 reproducible bands were amplified by Nine SSR primers,and 24 of which were polymorphic; 236 bands were amplified by 30 ISSR primers,and 113 of which were polymorphic.31 genotypes were discriminated with 1-3 distinct polymorphic bands generated from the primers ISSR and SSR.Seven cultivar-specific ISSR fragments and two SSR unique alleles obtained from this study were available to be converted into Sequence Characterized Amplified Region (SCAR) markers.The genetic similarity coefficient (GS) estimated from these molecular data averaged were 0.939 (ranged from 0.856 to 0.983) for ISSR and 0.646 (ranged from 0.240 to 1.000) for SSR,respectively.The combined grouping association indicated that most local Chinese peach cultivars and exotic accessions were clustered together.This could be related to the mode of introduction and maintenance of the peach cultivars involving limited foundation germplasm,exchange of cultivars between plantations,and periodic development of new recombinant cultivars following sexual reproduction.[Conclusion] The results obtained in this work would help to improve the conservation,molecular identification and management of peach germplasm in breeding.
文摘The aim of the present experiment was to study the relationship between the distribution of relative light intensity in canopy and yield and quality of Wanmi peach. The optimum relative canopy light intensity was judged to be 36.3% for high quality peaches, when canopy volumes of Wanmi peach trees with a relative light intensity 〈 30% accounted for 7.7 and 47.9% of the total canopy volume in June and September, respectively. The canopy volume with a relative light intensity 〉 80% was 27.7 and 3.1% of the total canopy volume in June and September, respectively. Peach canopies were divided into 0.5 m × 0.5 m × 0.5 m cubes, with the relative light intensity being measured at different positions of the canopy during the growing season. Yield and fruit quality were also measured at these positions at harvest. The results showed that the relative light intensity decreased gradually from outside to inside and from top to bottom of the tree canopy. Fruit were mainly distributed in the upper and middle portions of the canopy, 1.5-3.0 m above ground. Regression results showed that single fruit weight and soluble solid content were positively related to relative light intensity.
文摘Taking Yihong,the main cultivar of mid-ripening honey peaches(Prunus persica)in Hunan,as material,this study explored the effects of different storage methods on the fruit quality and physiological changes in Yihong honey peach by the combination of polyethylene film packaging with low-temperature storage.The results showed that the weight loss rate of packaged storage at normal temperature(T1)was significantly lower than that of unpackaged storage at normal temperature(CK),but there was no significant difference in other indicators.In the middle of storage,the respiration rate and ethylene release of packaged storage at 0℃(T3)were extremely significantly lower or significantly lower than those of unpackaged storage at 0℃(T2),packaged storage at 0℃after cold adapting at 8℃for 5 d(T4),and packaged storage in a fluctuating temperature range of 0~3.5℃(T5).After storage,the structure of the middle lamella in the cell wall of T3 was compact and uniform,and the mitochondrial structure was complete,while the cell walls and mitochondria of T4 and T5 were severely deformed and disintegrated.The activities of antioxidant enzymes peroxidase(POD)and superoxide dismutase(SOD)of T3 was significantly higher than those of T4 and T5,and the content of malondialdehyde(MDA)and polyphenol oxidase(PPO)of T3 was also the lowest.Therefore,0°C packaged storage can effectively delay the senescence of Yihong honey peach and prolong its freshness period.
文摘This study was conducted to assess the effect of gibberellin and its possible mechanism of action on peach flower formation. At flower induction, 100 mg L^-1 of gibberellic acid 3 (GA3) was sprayed on the leaves of peach [Prunus persica (L.) Batsch.] cv. Bayuecui. Using anatomy, immunohistochemistry, and semi-quantitation, the in situ distribution of GAs and the expression of the key genes involved in peach flower formation in the apical meristem were studied during flowering differentiation. The results showed that induction of flowering in the Bayuecui peach occurred prior to 10 July in Beijing, China. Flower induction and further differentiation of the peach flower organs were significantly inhibited by leaf-spraying of GA3 at a concentration of 100 mg L^-1 during the induction stage. The flowering rate was only 11.67% after treatment. The distribution of GA1 in the apical meristem varied during the process of flower bud differentiation. From 13 June to 25 July, the GA1 signal from control plants was detected mainly in the vascular bundles at the base of the flower buds. No GA1 signal was detected in the apical meristem. After treatment with GA3, the distribution was similar to that of the control from 13 June to 3 July. On 13 July, a GA1 signal was detected in the apical meristem accompanied by an increase in the GA1 signal in the vascular bundles at the base of the flower buds. The GA1 signal weakened significantly in both the vascular bundles and the apical meristem on 25 July. The expression of the genes PpLEAFY and MADS6 in flower buds could be detected only on 10 October in the GA3-treated plants. The critical period for flower induction of Bayuecui peach in Beijing was in early July, during which time, leaf-spraying with 100 mg L-1 GA3 could effectively inhibit flower induction and further differentiation of the flower buds. GA1 in the gibberellin family was the suppressor for flower induction in peach. Its action was affected by the stage of flower bud differentiation. Expression of the key genes PpLEAFY and MADS6 involved in flower formation was inhibited by GA3 treatment.