Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data.This property makes it difficult for steganalysts’powerful data extrac...Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data.This property makes it difficult for steganalysts’powerful data extraction tools to detect the hidden data and ensures high-quality stego image generation.However,using a seed key to generate non-repeated sequential numbers takes a long time because it requires specific mathematical equations.In addition,these numbers may cluster in certain ranges.The hidden data in these clustered pixels will reduce the image quality,which steganalysis tools can detect.Therefore,this paper proposes a data structure that safeguards the steganographic model data and maintains the quality of the stego image.This paper employs the AdelsonVelsky and Landis(AVL)tree data structure algorithm to implement the randomization pixel selection technique for data concealment.The AVL tree algorithm provides several advantages for image steganography.Firstly,it ensures balanced tree structures,which leads to efficient data retrieval and insertion operations.Secondly,the self-balancing nature of AVL trees minimizes clustering by maintaining an even distribution of pixels,thereby preserving the stego image quality.The data structure employs the pixel indicator technique for Red,Green,and Blue(RGB)channel extraction.The green channel serves as the foundation for building a balanced binary tree.First,the sender identifies the colored cover image and secret data.The sender will use the two least significant bits(2-LSB)of RGB channels to conceal the data’s size and associated information.The next step is to create a balanced binary tree based on the green channel.Utilizing the channel pixel indicator on the LSB of the green channel,we can conceal bits in the 2-LSB of the red or blue channel.The first four levels of the data structure tree will mask the data size,while subsequent levels will conceal the remaining digits of secret data.After embedding the bits in the binary tree level by level,the model restores the AVL tree to create the stego image.Ultimately,the receiver receives this stego image through the public channel,enabling secret data recovery without stego or crypto keys.This method ensures that the stego image appears unsuspicious to potential attackers.Without an extraction algorithm,a third party cannot extract the original secret information from an intercepted stego image.Experimental results showed high levels of imperceptibility and security.展开更多
In today’s rapidly evolving landscape of communication technologies,ensuring the secure delivery of sensitive data has become an essential priority.To overcome these difficulties,different steganography and data encr...In today’s rapidly evolving landscape of communication technologies,ensuring the secure delivery of sensitive data has become an essential priority.To overcome these difficulties,different steganography and data encryption methods have been proposed by researchers to secure communications.Most of the proposed steganography techniques achieve higher embedding capacities without compromising visual imperceptibility using LSB substitution.In this work,we have an approach that utilizes a combinationofMost SignificantBit(MSB)matching andLeast Significant Bit(LSB)substitution.The proposed algorithm divides confidential messages into pairs of bits and connects them with the MSBs of individual pixels using pair matching,enabling the storage of 6 bits in one pixel by modifying a maximum of three bits.The proposed technique is evaluated using embedding capacity and Peak Signal-to-Noise Ratio(PSNR)score,we compared our work with the Zakariya scheme the results showed a significant increase in data concealment capacity.The achieved results of ourwork showthat our algorithmdemonstrates an improvement in hiding capacity from11%to 22%for different data samples while maintaining a minimumPeak Signal-to-Noise Ratio(PSNR)of 37 dB.These findings highlight the effectiveness and trustworthiness of the proposed algorithm in securing the communication process and maintaining visual integrity.展开更多
The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power ...The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power and pulse width influence on SNR is studied on the theoretical derivation and analysis,and the results show that the higher the peak power can realize the greater the signal-to-noise ratio of coherent Doppler wind lidar.But when the peak power is too large,the laser pulse may appear nonlinear phenomenon,which cause the damage of the laser.So,the peak power must be less than the stimulated brillouin scattering power threshold.Increasing the pulse width can make the laser device to output more energy,but it will also make the spatial resolution lower,and the influence of turbulence on SNR will be greater.After a series of simulation analyses,it can be concluded that when the peak power is 650W and the pulse width is 340ns,the SNR of the system can be maximized.In addition,the coherent Doppler wind lidar system is set up to carry out corresponding experimental verification.The experimental results are consistent with the theoretical analysis and simulation,which verifies the correctness of the theoretical analysis and simulation results.It provides theoretical basis and practical ex-perience for the design of laser transmitting pulse in coherent Doppler wind lidar system.展开更多
The existence of shadow leads to the degradation of the image qualities and the defect of ground object information.Shadow removal is therefore an essential research topic in image processing filed.The biggest challen...The existence of shadow leads to the degradation of the image qualities and the defect of ground object information.Shadow removal is therefore an essential research topic in image processing filed.The biggest challenge of shadow removal is how to restore the content of shadow areas correctly while removing the shadow in the image.Paired regions for shadow removal approach based on multi-features is proposed, in which shadow removal is only performed on related sunlit areas.Feature distance between regions is calculated to find the optimal paired regions with considering of multi-features(texture, gradient feature, etc.) comprehensively.Images in different scenes with peak signal-to-noise ratio(PSNR) and structural similarity(SSIM) evaluation indexes are chosen for experiments.The results are shown with six existing comparison methods by visual and quantitative assessments, which verified that the proposed method shows excellent shadow removal effect, the brightness, color of the removed shadow area, and the surrounding non-shadow area can be naturally fused.展开更多
In recent years,enhancement of underwater images is a challenging task,which is gaining priority since the human eye cannot perceive images under water.The significant details underwater are not clearly captured using...In recent years,enhancement of underwater images is a challenging task,which is gaining priority since the human eye cannot perceive images under water.The significant details underwater are not clearly captured using the conventional image acquisition techniques,and also they are expensive.Hence,the quality of the image processing algorithms can be enhanced in the absence of costly and reliable acquisition techniques.Traditional algorithms have certain limitations in the case of these images with varying degrees of fuzziness and color deviation.In the proposed model,the authors used a deep learning model for underwater image enhancement.First,the original image is pre-processed by the white balance algorithm for colour correction and the contrast of the image is improved using the contrast enhancement technique.Next,the pre-processed image is given to the MIRNet for enhancement.MIRNet is a deep learning framework that can be used to enhance the low-light level images.The enhanced image quality is measured using peak signal-to-noise ratio(PSNR),root mean square error(RMSE),and structural similarity index(SSIM)parameters.展开更多
提出一种适用于去除高密度椒盐噪声的图像滤波算法,以进一步提高输出图像的峰值信噪比。利用直方图形状判定椒盐噪声的两种灰度值,用于噪声像素的检测与定位。对于非噪声像素,直接输出灰度值;对于噪声像素,沿其邻域的k个方向分别搜索一...提出一种适用于去除高密度椒盐噪声的图像滤波算法,以进一步提高输出图像的峰值信噪比。利用直方图形状判定椒盐噪声的两种灰度值,用于噪声像素的检测与定位。对于非噪声像素,直接输出灰度值;对于噪声像素,沿其邻域的k个方向分别搜索一个距离最近的非噪声像素,然后以欧式距离倒数为权重,采用k个非噪声像素的加权灰度均值作为噪声像素的输出灰度值。测试了不同的方向数k对滤波性能的影响,确定了k的最佳取值为4。采用该方法对椒盐噪声密度为10%到90%的图像进行滤波,输出图像的峰值信噪比比现有同类方法提高了1.8~4.7 d B。该方法有效提高了高密度椒盐噪声图像的滤波质量,处理速度满足实时要求。展开更多
文摘Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data.This property makes it difficult for steganalysts’powerful data extraction tools to detect the hidden data and ensures high-quality stego image generation.However,using a seed key to generate non-repeated sequential numbers takes a long time because it requires specific mathematical equations.In addition,these numbers may cluster in certain ranges.The hidden data in these clustered pixels will reduce the image quality,which steganalysis tools can detect.Therefore,this paper proposes a data structure that safeguards the steganographic model data and maintains the quality of the stego image.This paper employs the AdelsonVelsky and Landis(AVL)tree data structure algorithm to implement the randomization pixel selection technique for data concealment.The AVL tree algorithm provides several advantages for image steganography.Firstly,it ensures balanced tree structures,which leads to efficient data retrieval and insertion operations.Secondly,the self-balancing nature of AVL trees minimizes clustering by maintaining an even distribution of pixels,thereby preserving the stego image quality.The data structure employs the pixel indicator technique for Red,Green,and Blue(RGB)channel extraction.The green channel serves as the foundation for building a balanced binary tree.First,the sender identifies the colored cover image and secret data.The sender will use the two least significant bits(2-LSB)of RGB channels to conceal the data’s size and associated information.The next step is to create a balanced binary tree based on the green channel.Utilizing the channel pixel indicator on the LSB of the green channel,we can conceal bits in the 2-LSB of the red or blue channel.The first four levels of the data structure tree will mask the data size,while subsequent levels will conceal the remaining digits of secret data.After embedding the bits in the binary tree level by level,the model restores the AVL tree to create the stego image.Ultimately,the receiver receives this stego image through the public channel,enabling secret data recovery without stego or crypto keys.This method ensures that the stego image appears unsuspicious to potential attackers.Without an extraction algorithm,a third party cannot extract the original secret information from an intercepted stego image.Experimental results showed high levels of imperceptibility and security.
基金in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493)by the 2024 Yeungnam University Research Grant.
文摘In today’s rapidly evolving landscape of communication technologies,ensuring the secure delivery of sensitive data has become an essential priority.To overcome these difficulties,different steganography and data encryption methods have been proposed by researchers to secure communications.Most of the proposed steganography techniques achieve higher embedding capacities without compromising visual imperceptibility using LSB substitution.In this work,we have an approach that utilizes a combinationofMost SignificantBit(MSB)matching andLeast Significant Bit(LSB)substitution.The proposed algorithm divides confidential messages into pairs of bits and connects them with the MSBs of individual pixels using pair matching,enabling the storage of 6 bits in one pixel by modifying a maximum of three bits.The proposed technique is evaluated using embedding capacity and Peak Signal-to-Noise Ratio(PSNR)score,we compared our work with the Zakariya scheme the results showed a significant increase in data concealment capacity.The achieved results of ourwork showthat our algorithmdemonstrates an improvement in hiding capacity from11%to 22%for different data samples while maintaining a minimumPeak Signal-to-Noise Ratio(PSNR)of 37 dB.These findings highlight the effectiveness and trustworthiness of the proposed algorithm in securing the communication process and maintaining visual integrity.
文摘The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power and pulse width influence on SNR is studied on the theoretical derivation and analysis,and the results show that the higher the peak power can realize the greater the signal-to-noise ratio of coherent Doppler wind lidar.But when the peak power is too large,the laser pulse may appear nonlinear phenomenon,which cause the damage of the laser.So,the peak power must be less than the stimulated brillouin scattering power threshold.Increasing the pulse width can make the laser device to output more energy,but it will also make the spatial resolution lower,and the influence of turbulence on SNR will be greater.After a series of simulation analyses,it can be concluded that when the peak power is 650W and the pulse width is 340ns,the SNR of the system can be maximized.In addition,the coherent Doppler wind lidar system is set up to carry out corresponding experimental verification.The experimental results are consistent with the theoretical analysis and simulation,which verifies the correctness of the theoretical analysis and simulation results.It provides theoretical basis and practical ex-perience for the design of laser transmitting pulse in coherent Doppler wind lidar system.
基金Supported by the National Natural Science Foundation of China (No. 41971356, 41701446)the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources (No. KF-2022-07-001)。
文摘The existence of shadow leads to the degradation of the image qualities and the defect of ground object information.Shadow removal is therefore an essential research topic in image processing filed.The biggest challenge of shadow removal is how to restore the content of shadow areas correctly while removing the shadow in the image.Paired regions for shadow removal approach based on multi-features is proposed, in which shadow removal is only performed on related sunlit areas.Feature distance between regions is calculated to find the optimal paired regions with considering of multi-features(texture, gradient feature, etc.) comprehensively.Images in different scenes with peak signal-to-noise ratio(PSNR) and structural similarity(SSIM) evaluation indexes are chosen for experiments.The results are shown with six existing comparison methods by visual and quantitative assessments, which verified that the proposed method shows excellent shadow removal effect, the brightness, color of the removed shadow area, and the surrounding non-shadow area can be naturally fused.
文摘In recent years,enhancement of underwater images is a challenging task,which is gaining priority since the human eye cannot perceive images under water.The significant details underwater are not clearly captured using the conventional image acquisition techniques,and also they are expensive.Hence,the quality of the image processing algorithms can be enhanced in the absence of costly and reliable acquisition techniques.Traditional algorithms have certain limitations in the case of these images with varying degrees of fuzziness and color deviation.In the proposed model,the authors used a deep learning model for underwater image enhancement.First,the original image is pre-processed by the white balance algorithm for colour correction and the contrast of the image is improved using the contrast enhancement technique.Next,the pre-processed image is given to the MIRNet for enhancement.MIRNet is a deep learning framework that can be used to enhance the low-light level images.The enhanced image quality is measured using peak signal-to-noise ratio(PSNR),root mean square error(RMSE),and structural similarity index(SSIM)parameters.
文摘提出一种适用于去除高密度椒盐噪声的图像滤波算法,以进一步提高输出图像的峰值信噪比。利用直方图形状判定椒盐噪声的两种灰度值,用于噪声像素的检测与定位。对于非噪声像素,直接输出灰度值;对于噪声像素,沿其邻域的k个方向分别搜索一个距离最近的非噪声像素,然后以欧式距离倒数为权重,采用k个非噪声像素的加权灰度均值作为噪声像素的输出灰度值。测试了不同的方向数k对滤波性能的影响,确定了k的最佳取值为4。采用该方法对椒盐噪声密度为10%到90%的图像进行滤波,输出图像的峰值信噪比比现有同类方法提高了1.8~4.7 d B。该方法有效提高了高密度椒盐噪声图像的滤波质量,处理速度满足实时要求。