In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initi...In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history α8^(0) (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω, ζ),and the specified intensity envelope, is generated by the traditional method that generates the requency domain; secondly,α8^(0) (t)is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions.展开更多
Purpose:This study aimed to examine the reliability and validity of load-velocity(L-V)relationship variables obtained through the 2-point method using different load combinations and velocity variables.Methods:Twenty ...Purpose:This study aimed to examine the reliability and validity of load-velocity(L-V)relationship variables obtained through the 2-point method using different load combinations and velocity variables.Methods:Twenty men performed 2 identical sessions consisting of 2 countermovement jumps against 4 external loads(20 kg,40 kg,60 kg,and80 kg)and a heavy squat against a load linked to a mean velocity(MV)of 0.55 m/s(load_(0.55)).The L-V relationship variables(load-axis intercept(L_(0)),velocity-axis intercept(v_(0)),and area under the L-V relationship line(A_(line)))were obtained using 3 velocity variables(MV,mean propulsive velocity(MPV),and peak velocity)by the multiple-point method including(20-40-60-80-load_(0.55))and excluding(20-40-60-80)the heavy squat,as well as from their respective 2-point methods(20-load_(0.55)and 20-80).Results:The L-V relationship variables were obtained with an acceptable reliability(coefncient of variation(CV)≤7.30%;intra-class correlation coefficient>0.63).The reliability of L_(0)and v_(0)was comparable for both methods(CV_(ratio)(calculated as higher value/lower value):1.11-1.12),but the multiple-point method provided Al_(ine)with a greater reliability(CV_(ratio)=1.26).The use of a heavy squat provided the L-V relationship variables with a comparable or higher reliability than the use of a heavy countermovement jump load(CV_(ratio):1.06-1.19).The peak velocity provided the load-velocity relationship variables with the greatest reliability(CV_(ratio):1.15-1.86)followed by the MV(CV_(ratio):1.07-1.18),and finally the MPV.The 2-point methods only revealed an acceptable validity for the MV and MPV(effect size≤0.19;Pearson s product-moment correlation coefficient≥0.96;Lin's concordance correlation coefficient≥0.94).Conclusion:The 2-point method obtained from a heavy squat load and MV or MPV is a quick,safe,and reliable procedure to evaluate the lower-body maximal neuromuscular capacities through the L-V relationship.展开更多
Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were u...Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.展开更多
BACKGROUND Umbilical artery thrombosis(UAT)is extremely uncommon and leads to adverse perinatal outcomes.Hypercoagulation of blood in pregnant women is suspected to be an important risk for UAT.Ultrasound is an effect...BACKGROUND Umbilical artery thrombosis(UAT)is extremely uncommon and leads to adverse perinatal outcomes.Hypercoagulation of blood in pregnant women is suspected to be an important risk for UAT.Ultrasound is an effective way to detect thrombosis.The mother can monitor her own fetal health using ultrasound,which enables her to take preventative action in case of emergency.AIM To investigate ultrasonic blood signal after UAT in the umbilical artery,and evaluate the relationship between hypercoagulability and UAT.METHODS We described a case of a newly formed UAT with markedly altered ultrasonic indices of umbilical artery blood flow,and retrospectively studied it with 18 UAT patients confirmed by histopathology from October 2019 and March 2023 in Xiamen Women and Children's Hospital.Patients’information was collected from medical archives,including maternal clinical data,neonatal outcomes,pathological findings and ultrasonic indices of umbilical artery blood flow,such as systolic-diastolic duration ratio(S/D),resistance index(RI),pulsatility index(PI)and peak systolic velocity(PSV).Ultrasound and coagulation indices were analyzed with matched samples t-test and Wilcoxon rank sum test using the statistical packages in R(version 4.2.1)including car(version 3.1-0)and stats(version 4.2.1),and visualized by ggplot2 package(version 3.3.6).RESULTS A patient with normal findings in second and third-trimester routine ultrasound scan developed UAT with severe changes in ultrasonic indices of umbilical artery blood flow(within 2.5th of reference ranges)in a short period of time.Statistical analysis of umbilical artery blood flow ultrasound indices for 19 patients with UAT showed that the decrease in S/D,RI,and PI and increase of PSV during the disease process was greater than that of non-UAT.All 18 patients delivered in our hospital showed characteristic manifestations of UAT on histological examination after delivery,most of which(16/18)showed umbilical cord abnormalities,with 15 umbilical cord torsion and 1 pseudoknot.Coagulation parameters were not significantly changed in UAT patients compared with normal pregnancy women.CONCLUSION Significant changes in ultrasound indicators after UAT were demonstrated.PSV can play important roles in the diagnosis of UAT.Hypercoagulability alone is not sufficient for the occurrence of UAT.展开更多
The law of blasting vibration caused by blasting in rock is very complex.Traditional numerical methods cannot well characterize all the influencing factors in the blasting process.The effects of millisecond time,charg...The law of blasting vibration caused by blasting in rock is very complex.Traditional numerical methods cannot well characterize all the influencing factors in the blasting process.The effects of millisecond time,charge length and detonation velocity on the blasting vibration are discussed by analyzing the characteristics of vibration wave generated by finite length cylindrical charge.It is found that in multi-hole millisecond blasting,blasting vibration superimpositions will occur several times within a certain distance from the explosion source due to the propagation velocity difference of P-wave and S-wave generated by a short column charge.These superimpositions will locally enlarge the peak velocity of blasting vibration particle.The magnitude and scope of the enlargement are closely related to the millisecond time.Meanwhile,the particle vibration displacement characteristics of rock under long cylindrical charge is analyzed.The results show that blasting vibration effect would no longer increase when the charge length increases to a certain extent.This indicates that the traditional simple calculation method using the maximum charge weight per delay interval to predict the effect of blasting vibration is unreasonable.Besides,the effect of detonation velocity on blasting vibration is only limited in a certain velocity range.When detonation velocity is greater than a certain value,the detonation velocity almost makes no impact on blasting vibration.展开更多
This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion par...This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar.展开更多
This study considered and predicted blast-induced ground vibration(PPV)in open-pit mines using bagging and sibling techniques under the rigorous combination of machine learning algorithms.Accordingly,four machine lear...This study considered and predicted blast-induced ground vibration(PPV)in open-pit mines using bagging and sibling techniques under the rigorous combination of machine learning algorithms.Accordingly,four machine learning algorithms,including support vector regression(SVR),extra trees(ExTree),K-nearest neighbors(KNN),and decision tree regression(DTR),were used as the base models for the purposes of combination and PPV initial prediction.The bagging regressor(BA)was then applied to combine these base models with the efforts of variance reduction,overfitting elimination,and generating more robust predictive models,abbreviated as BA-ExTree,BAKNN,BA-SVR,and BA-DTR.It is emphasized that the ExTree model has not been considered for predicting blastinduced ground vibration before,and the bagging of ExTree is an innovation aiming to improve the accuracy of the inherently ExTree model,as well.In addition,two empirical models(i.e.,USBM and Ambraseys)were also treated and compared with the bagging models to gain a comprehensive assessment.With this aim,we collected 300 blasting events with different parameters at the Sin Quyen copper mine(Vietnam),and the produced PPV values were also measured.They were then compiled as the dataset to develop the PPV predictive models.The results revealed that the bagging models provided better performance than the empirical models,except for the BA-DTR model.Of those,the BA-ExTree is the best model with the highest accuracy(i.e.,88.8%).Whereas,the empirical models only provided the accuracy from 73.6%–76%.The details of comparisons and assessments were also presented in this study.展开更多
The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and...The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and resultant peak particle velocity(PPV)generates.With the orientation sequence of holes blasts on site,the superimposition angle of wave changes and hence results in significant variation in resultant PPV.The orientation with respect to the initiation of blasts resulting in lowest PPV needs to be identified for any site.By knowing the PPV contour of vibration waves in mine sites,it is possible to reduce the vibration on the structures by changing the initiation sequence.In this paper,experimental blasts were conducted at two different mine sites and the PPV values were recorded at different ori-entations from the blast site and its initiation sequence.The PPV contours were drawn to identify the orientation with least and highest PPV generation line.It was found that by merely changing the initi-ation sequence of blasts with respect to the sensitive structure or point of interest,the PPV values can be reduced significantly up to 76.9%.展开更多
Recently,Garai et al.(2022)published a paper on the impact of orientation of blast initiation on ground vibrations.However,some of the claims are not supported by the results of the given tests.In Fig.1(see Fig.8 in G...Recently,Garai et al.(2022)published a paper on the impact of orientation of blast initiation on ground vibrations.However,some of the claims are not supported by the results of the given tests.In Fig.1(see Fig.8 in Garai et al.,2022),there are contours of measured vibration velocities in 4 directions(every 90?)and an incorrect interpretation between them.By placing all measured vibration velocity values(Gerai et al.,2022)at well-defined points on a single figure,it was not possible to precisely determine the type of vibration velocity,such as radial,tangential and vertical vibration velocities,with their different shapes.An incorrect conclusion was also drawn about the direction of the highest vibration velocity.The paper by Garai et al.(2022)measured the vibrational velocity of the medium through which the seismic wave passed,but used the incorrect term shock wave.The shock wave would have destroyed the seismic measuring instruments.A superposition of the vibrational velocity was considered,but not combined with the vibrational frequency of the seismic wave.This paper presents a method for selecting the time delay between successively initiated explosive charges to the measured frequency of the seismic wave,so that the direction of initiation of the explosive charges does not affect the vibration velocity of the ground through which the seismic wave passes.The theoretical and measured shapes and waveforms of radial velocity and tangential velocity in an opencast lignite mine are then presented.Moreover,the conditions for the formation of shock wave,transition wave and seismic waves are presented.展开更多
Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by usin...Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by using the drill and blast tunneling(D&B).However,the dynamic response and failure mechanism of surrounding rocks of the existing tunnel caused by adjacent transient excavation are not clear due to the difficulty in conducting field tests and laboratory experiments.Therefore,a novel transient unloading experimental system for deep tunnel excavation was proposed in this study.The real stress path and the unloading rate can be reproduced by using this proposed system.The experiments were conducted for observing the dynamic response of the existing tunnel induced by adjacent transient excavation under different lateral pressure coefficients l(?0.4,0.6,0.8,1,1.2,1.4,1.6,1.8)with a polymethyl methacrylate(PMMA)specimen.The propagation of the impact wave and unloading surface wave was detected through the digital image correlation(DIC)analysis.The reflection of the unloading surface wave on the incident side of the existing tunnel(tunnel-E)was observed and analyzed.Moreover,the dynamic characteristics of the stress redistribution,the particle displacement and vibration velocity of surrounding rocks of tunnel-E were analyzed and summarized.In addition,the Mohr-Coulomb(MeC)failure criterion with tension cut-off was adopted to evaluate the stability of the existing tunnel under adjacent transient excavation.The results indicate that the incident side of the existing tunnel under the dynamic disturbance of transient excavation of an adjacent tunnel was more prone to fail,followed by the shadow side and the top/bottom side.展开更多
It is critical to determine whether a site has potential damage in real-time after an earthquake occurs,which is a challenge in earthquake disaster reduction.Here,we propose a real-time Earthquake Potential Damage pre...It is critical to determine whether a site has potential damage in real-time after an earthquake occurs,which is a challenge in earthquake disaster reduction.Here,we propose a real-time Earthquake Potential Damage predictor(EPDor)based on predicting peak ground velocities(PGVs)of sites.The EPDor is composed of three parts:(1)predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models;(2)predicting the PGVs at distant sites based on the empirical ground motion prediction equation;(3)generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in(1)and(2).We apply the EPDor to the 2022 M_(S) 6.9 Menyuan earthquake in Qinghai Province,China to predict its potential damage.Within the initial few seconds after the first station is triggered,the EPDor can determine directly whether there is potential damage for some sites to a certain degree.Hence,we infer that the EPDor has potential application for future earthquakes.Meanwhile,it also has potential in Chinese earthquake early warning system.展开更多
The aim of this study was to compare lower limb blood flow in asymptomatic diabetic patients with early-stage peripheral artery disease (PAD) and non-diabetic controls using duplex ultrasound parameters. This was a co...The aim of this study was to compare lower limb blood flow in asymptomatic diabetic patients with early-stage peripheral artery disease (PAD) and non-diabetic controls using duplex ultrasound parameters. This was a comparative cohort study of lower limb blood flow in 35 Black-African diabetic patients (25 females and 10 males with early-stage PAD median age 54 [IQR, 47 - 61] years;median HbA<sub>1c</sub> 6.3 [IQR, 5.7 - 8.0]%<sub></sub>;BMI 29.2 ± 6.7;ABI 1.1 ± 0.1) and 36 non-diabetic controls (28 females and 8 males;median age 54 [IQR, 47 - 61] years;median HbA<sub>1c</sub> 6.3 [IQR, 5.7 - 8.0] %, BMI 29.2 ± 6.7;ABI 1.1 ± 0.1). Peak systolic velocity (PSV), pulsatility index (PI) and resistive index (RI), were utilised to compare blood flow in the popliteal arteries (PA), anterior tibial arteries (ATA) and posterior tibial arteries (PTA) in addition to ankle brachial index. All the ultrasound parameters showed good (ICC ≥ 0.7;0.50 - 0.85, 95% CI) to excellent (ICC = 1.0;1.0 - 1.0, 95% CI) reliability within groups as well as acceptable variability () other than pulsatility index of the anterior tibial artery within diabetic patients (11.1% CV). PSV, RI and PI were significantly and meaningfully higher (P;d ≥ 0.33), in diabetic patients compared to non-diabetic controls except for PI - PTA (P = 0.72;d = 0.11). Differences in PSV and RI highlighted the effects of early-stage PAD on lower limb blood flow of diabetic patients. In contrast, the effects of early-stage PAD on blood flow were not demonstrated in the PTA and ATA of diabetic patients by PI.展开更多
The MS8.0 Wenchuan earthquake induced severe landslide hazards.For the first time in China,large numbers of strong motion records were obtained during the Wenchuan earthquake,providing the opportunity to study the rel...The MS8.0 Wenchuan earthquake induced severe landslide hazards.For the first time in China,large numbers of strong motion records were obtained during the Wenchuan earthquake,providing the opportunity to study the relationships between ground-motion parameters and the earthquake-induced landslides.Nearly 40 groups of records from the main shock distributed along the Longmenshan fault lines were used to carry out this study.The results appropriate to the Longmenshan area are as follows:1 The threshold of the peak ground acceleration(PGA) is about 0.7 m/s2.When the PGA reaches 2 m/s2,the landslide hazards are very serious; 2 The threshold of the peak ground velocity(PGV) is about 0.5 m/s.When the PGV reaches 1.5 m/s,severe landslide hazards will be induced; 3 The threshold for the Arias intensity(Ia) is about 0.2 m/s.When the Ia in one horizontal direction reaches 2 m/s,landslide hazards will be very serious; 4 As for the relevance order of the parameters to earthquake-induced landslides,Ia is the leading parameter,followed by PGV,and finally PGA.The results presented in this paper are consistent with the results from other studies,indicating that the threshold of the ground motion parameters for strong earthquakes is of the same order of magnitude as that of moderate earthquakes.Landslide density of local sites fluctuated with the increase of ground motion intensity if the thresholds were reached.When the upper limits are exceeded,the landslide density remains at a certain level with relatively little variation.展开更多
On the basis of 10935 broadband velocity records of 135 earthquakes (ML3.0-6.4 and epicentral distance of 26-623 km) occurred from May 12 to June l0 in 2008, which are collected from 27 bedrock stations included in ...On the basis of 10935 broadband velocity records of 135 earthquakes (ML3.0-6.4 and epicentral distance of 26-623 km) occurred from May 12 to June l0 in 2008, which are collected from 27 bedrock stations included in Sichuan Earthquake Monitoring Network, the corresponding acceleration records are obtained by a real-time simulation method. Then by regression analysis on the data, the relation between the peak ground acceleration and velocity attenuation of small and moderate bedrock earthquakes occurred in Sichuan region is acquired. And the relation is verified by a M4.8 earthquake took place recently in Wenchuan. Finally, the attenuation relations, which are coincident to the geological conditions in Sichuan region, are proposed by studying the records from Sichuan earthquake network.展开更多
We collect 1974 broad-band velocity records of 94 earthquakes (ML=2.84.9, △=13462 km) from seven stations of the Fujian Seismic Network from March 1999 to March 2007. Using real-time simulation, we obtain the corresp...We collect 1974 broad-band velocity records of 94 earthquakes (ML=2.84.9, △=13462 km) from seven stations of the Fujian Seismic Network from March 1999 to March 2007. Using real-time simulation, we obtain the corresponding acceleration and then adopt different models to analyze the seismic data. As a result, a new attenuation relationship between PGA and PGV of the small and moderate earthquakes on bedrock site in Fujian region is established. The Yongchun earthquake occurred recently verifies the attenuation relationship well. This paper provides a new approach for studying the ground motion attenuation relationship using velocity records.展开更多
In this paper,two new methods are introduced to fit response spectrum in generating earthquake acceleration time history.The first method is Adding Harmonic Wave in Time Domain(AHWTD).In this method, a control point o...In this paper,two new methods are introduced to fit response spectrum in generating earthquake acceleration time history.The first method is Adding Harmonic Wave in Time Domain(AHWTD).In this method, a control point of response spectrum is adjusted by adding a harmonic time history to the adjusted one.Three features of the method are that it has small cross interference,small amount of computation and it can give consideration to the amplitude envelope.The second one is Approximating Response Spectrum as a Whole(ARSW).This method has following feature. When adjust a time history that is decided by amplitude spectrum A k and phase spectrum φ k(k =0, 1, 2, …, n ), the mean square root of every relative error E j(j= 1, 2, …, M ) between response spectrum and object spectrum V r=∑Mj=1E 2 j/M is used to decide adjusting direction of any amplitude spectrum A k . Because E j and V r are functions of A k and φ k , the problem of fitting response spectrum in generating earthquake acceleration time history can be changed to a problem of finding minimum point of V r . Restricted by Nyquist frequency, AHWTD is not suitable for high frequencies of response spectrum. Restricted by frequency distribution of FFT, the density of control points in the low frequency part can′t be too dense for ARSW. But two methods can replenish each other and get such a good fitting effect that we can fit the given peak ground acceleration and peak ground velocity well at the same time.展开更多
The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative p...The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative psychological impacts on involved personnel and also judicial complaints of local inhabitants in the nearby area. This paper presents achieved results during an investigation carried out at Sungun Copper Mine, lran. Besides, the research also studied the significance of blast induced ground vibration and air- blast on safety aspects of nearby structures, potential risks, frequency analysis, and human response. According to the United States Bureau of Mines (USBM) standard, the attenuation equations were devel- oped using field records. A general frequency analysis and risk evaluation revealed that: 94% of generated frequencies are less than 14 Hz which is within the natural frequency of structures that increases risk of damage. At the end, studies of human response showed destructive effects of the phenomena by ranging between 2.54 and 25.40 mm/s for ground vibrations and by the average value of 110 dB for noise levels which could increase sense of uncertainty among involved employees.展开更多
Ground vibration is one of the side effects of blasting, in which way considerable amount of explosive energy is exhausted, and causes decrease in production and even decline in mine development workings. In this stud...Ground vibration is one of the side effects of blasting, in which way considerable amount of explosive energy is exhausted, and causes decrease in production and even decline in mine development workings. In this study, 57 recorded 3-C seismograms from 11 blasts in Sarcheshmeh copper mine, Kerman, Iran, are processed and analyzed. These data were recorded by digital seismograph PDAS-100 and analyzed by DADISP software. Finally, blasting parameters, such as explosive weight and type, distance between the structures and blasting site, blasting delays, affecting ground vibration are reviewed and their influence on peak particle velocity (PPV) are studied. Based on this study, suitable detonation delays and explosive type is determined. Considering these data, a graph of PPV versus scaled distance for Sarcheshmeh copper mine is prepared, by the help of which, safe distance for structures and accordingly explosive quantity could be determined.展开更多
Blasting technology is widely used to prevent coal bursts by presplitting the overburden in underground coal mines.The control of blasting intensity is important in achieving the optimal pre-split effectiveness and re...Blasting technology is widely used to prevent coal bursts by presplitting the overburden in underground coal mines.The control of blasting intensity is important in achieving the optimal pre-split effectiveness and reducing the damage to roadway structures that are subjected to blasting vibrations.As a critical parameter to measure the blasting intensity,the peak particle velocity(PPV)of vibration induced by blasting,should be accurately predicted,and can provide a useful guideline for the design of blasting parameters and the evaluation of the damage.In this paper,various factors that influence PPV,induced by roof pre-split blasting,were analyzed using engineering blasting experiments and numerical simulations.The results showed that PPV was affected by many factors,including charge distribution design(total charge and maximum charge per hole),spacing of explosive centers,as well as propagation distance and path.Two parameters,average charge coefficient and spatial discretization coefficient were used to quantitatively characterize the influences of charge distribution and spacing of explosive centers on the PPV induced by roof pre-split blasting.Then,a model consisting of the combination of artificial neural network(ANN)and genetic algorithm(GA)was adopted to predict the PPV that was induced by roof presplit blasting.A total of 24 rounds of roof pre-split blasting experiments were carried out in a coal mine,and vibration signals were collected using a microseismic(MS)monitoring system to construct the neural network datasets.To verify the efficiency of the proposed GA-ANN model,empirical correlations were applied to predict PPV for the same datasets.The results showed that the GA-ANN model had superiority in predicting PPV compared to empirical correlations.Finally,sensitivity analysis was performed to evaluate the impacts of input parameters on PPV.The research results are of great significance to improve the prediction accuracy of PPV induced by roof pre-splitting blasting.展开更多
基金National Natural Science Foundation of China (50278090).
文摘In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history α8^(0) (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω, ζ),and the specified intensity envelope, is generated by the traditional method that generates the requency domain; secondly,α8^(0) (t)is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions.
文摘Purpose:This study aimed to examine the reliability and validity of load-velocity(L-V)relationship variables obtained through the 2-point method using different load combinations and velocity variables.Methods:Twenty men performed 2 identical sessions consisting of 2 countermovement jumps against 4 external loads(20 kg,40 kg,60 kg,and80 kg)and a heavy squat against a load linked to a mean velocity(MV)of 0.55 m/s(load_(0.55)).The L-V relationship variables(load-axis intercept(L_(0)),velocity-axis intercept(v_(0)),and area under the L-V relationship line(A_(line)))were obtained using 3 velocity variables(MV,mean propulsive velocity(MPV),and peak velocity)by the multiple-point method including(20-40-60-80-load_(0.55))and excluding(20-40-60-80)the heavy squat,as well as from their respective 2-point methods(20-load_(0.55)and 20-80).Results:The L-V relationship variables were obtained with an acceptable reliability(coefncient of variation(CV)≤7.30%;intra-class correlation coefficient>0.63).The reliability of L_(0)and v_(0)was comparable for both methods(CV_(ratio)(calculated as higher value/lower value):1.11-1.12),but the multiple-point method provided Al_(ine)with a greater reliability(CV_(ratio)=1.26).The use of a heavy squat provided the L-V relationship variables with a comparable or higher reliability than the use of a heavy countermovement jump load(CV_(ratio):1.06-1.19).The peak velocity provided the load-velocity relationship variables with the greatest reliability(CV_(ratio):1.15-1.86)followed by the MV(CV_(ratio):1.07-1.18),and finally the MPV.The 2-point methods only revealed an acceptable validity for the MV and MPV(effect size≤0.19;Pearson s product-moment correlation coefficient≥0.96;Lin's concordance correlation coefficient≥0.94).Conclusion:The 2-point method obtained from a heavy squat load and MV or MPV is a quick,safe,and reliable procedure to evaluate the lower-body maximal neuromuscular capacities through the L-V relationship.
基金financially supported by the NationalNatural Science Foundation of China(Grant No.42072309)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)(Grant No.CUGDCJJ202217)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199)the Hubei Key Laboratory of Blasting Engineering Foundation(HKLBEF202002).
文摘Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.
基金Natural Science Foundation of Xiamen,No.3502Z202373120and National Key R&D Program of China,No.2022YFF0606301.
文摘BACKGROUND Umbilical artery thrombosis(UAT)is extremely uncommon and leads to adverse perinatal outcomes.Hypercoagulation of blood in pregnant women is suspected to be an important risk for UAT.Ultrasound is an effective way to detect thrombosis.The mother can monitor her own fetal health using ultrasound,which enables her to take preventative action in case of emergency.AIM To investigate ultrasonic blood signal after UAT in the umbilical artery,and evaluate the relationship between hypercoagulability and UAT.METHODS We described a case of a newly formed UAT with markedly altered ultrasonic indices of umbilical artery blood flow,and retrospectively studied it with 18 UAT patients confirmed by histopathology from October 2019 and March 2023 in Xiamen Women and Children's Hospital.Patients’information was collected from medical archives,including maternal clinical data,neonatal outcomes,pathological findings and ultrasonic indices of umbilical artery blood flow,such as systolic-diastolic duration ratio(S/D),resistance index(RI),pulsatility index(PI)and peak systolic velocity(PSV).Ultrasound and coagulation indices were analyzed with matched samples t-test and Wilcoxon rank sum test using the statistical packages in R(version 4.2.1)including car(version 3.1-0)and stats(version 4.2.1),and visualized by ggplot2 package(version 3.3.6).RESULTS A patient with normal findings in second and third-trimester routine ultrasound scan developed UAT with severe changes in ultrasonic indices of umbilical artery blood flow(within 2.5th of reference ranges)in a short period of time.Statistical analysis of umbilical artery blood flow ultrasound indices for 19 patients with UAT showed that the decrease in S/D,RI,and PI and increase of PSV during the disease process was greater than that of non-UAT.All 18 patients delivered in our hospital showed characteristic manifestations of UAT on histological examination after delivery,most of which(16/18)showed umbilical cord abnormalities,with 15 umbilical cord torsion and 1 pseudoknot.Coagulation parameters were not significantly changed in UAT patients compared with normal pregnancy women.CONCLUSION Significant changes in ultrasound indicators after UAT were demonstrated.PSV can play important roles in the diagnosis of UAT.Hypercoagulability alone is not sufficient for the occurrence of UAT.
基金Project(50878123)supported by the National Natural Science Foundation of ChinaProject(20113718110002)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(DPMEIKF201307)supported by the Fund of the State key Laboratory of Disaster Prevention&Mitigation of Explosion&Impact(PLA University and Technology),ChinaProject(13BS402)supported by Huaqiao University Research Foundation,China
文摘The law of blasting vibration caused by blasting in rock is very complex.Traditional numerical methods cannot well characterize all the influencing factors in the blasting process.The effects of millisecond time,charge length and detonation velocity on the blasting vibration are discussed by analyzing the characteristics of vibration wave generated by finite length cylindrical charge.It is found that in multi-hole millisecond blasting,blasting vibration superimpositions will occur several times within a certain distance from the explosion source due to the propagation velocity difference of P-wave and S-wave generated by a short column charge.These superimpositions will locally enlarge the peak velocity of blasting vibration particle.The magnitude and scope of the enlargement are closely related to the millisecond time.Meanwhile,the particle vibration displacement characteristics of rock under long cylindrical charge is analyzed.The results show that blasting vibration effect would no longer increase when the charge length increases to a certain extent.This indicates that the traditional simple calculation method using the maximum charge weight per delay interval to predict the effect of blasting vibration is unreasonable.Besides,the effect of detonation velocity on blasting vibration is only limited in a certain velocity range.When detonation velocity is greater than a certain value,the detonation velocity almost makes no impact on blasting vibration.
文摘This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar.
基金funded by Vietnam National Foundation for Science and Tech-nology Development(NAFOSTED)under Grant No.105.99-2019.309.
文摘This study considered and predicted blast-induced ground vibration(PPV)in open-pit mines using bagging and sibling techniques under the rigorous combination of machine learning algorithms.Accordingly,four machine learning algorithms,including support vector regression(SVR),extra trees(ExTree),K-nearest neighbors(KNN),and decision tree regression(DTR),were used as the base models for the purposes of combination and PPV initial prediction.The bagging regressor(BA)was then applied to combine these base models with the efforts of variance reduction,overfitting elimination,and generating more robust predictive models,abbreviated as BA-ExTree,BAKNN,BA-SVR,and BA-DTR.It is emphasized that the ExTree model has not been considered for predicting blastinduced ground vibration before,and the bagging of ExTree is an innovation aiming to improve the accuracy of the inherently ExTree model,as well.In addition,two empirical models(i.e.,USBM and Ambraseys)were also treated and compared with the bagging models to gain a comprehensive assessment.With this aim,we collected 300 blasting events with different parameters at the Sin Quyen copper mine(Vietnam),and the produced PPV values were also measured.They were then compiled as the dataset to develop the PPV predictive models.The results revealed that the bagging models provided better performance than the empirical models,except for the BA-DTR model.Of those,the BA-ExTree is the best model with the highest accuracy(i.e.,88.8%).Whereas,the empirical models only provided the accuracy from 73.6%–76%.The details of comparisons and assessments were also presented in this study.
文摘The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and resultant peak particle velocity(PPV)generates.With the orientation sequence of holes blasts on site,the superimposition angle of wave changes and hence results in significant variation in resultant PPV.The orientation with respect to the initiation of blasts resulting in lowest PPV needs to be identified for any site.By knowing the PPV contour of vibration waves in mine sites,it is possible to reduce the vibration on the structures by changing the initiation sequence.In this paper,experimental blasts were conducted at two different mine sites and the PPV values were recorded at different ori-entations from the blast site and its initiation sequence.The PPV contours were drawn to identify the orientation with least and highest PPV generation line.It was found that by merely changing the initi-ation sequence of blasts with respect to the sensitive structure or point of interest,the PPV values can be reduced significantly up to 76.9%.
文摘Recently,Garai et al.(2022)published a paper on the impact of orientation of blast initiation on ground vibrations.However,some of the claims are not supported by the results of the given tests.In Fig.1(see Fig.8 in Garai et al.,2022),there are contours of measured vibration velocities in 4 directions(every 90?)and an incorrect interpretation between them.By placing all measured vibration velocity values(Gerai et al.,2022)at well-defined points on a single figure,it was not possible to precisely determine the type of vibration velocity,such as radial,tangential and vertical vibration velocities,with their different shapes.An incorrect conclusion was also drawn about the direction of the highest vibration velocity.The paper by Garai et al.(2022)measured the vibrational velocity of the medium through which the seismic wave passed,but used the incorrect term shock wave.The shock wave would have destroyed the seismic measuring instruments.A superposition of the vibrational velocity was considered,but not combined with the vibrational frequency of the seismic wave.This paper presents a method for selecting the time delay between successively initiated explosive charges to the measured frequency of the seismic wave,so that the direction of initiation of the explosive charges does not affect the vibration velocity of the ground through which the seismic wave passes.The theoretical and measured shapes and waveforms of radial velocity and tangential velocity in an opencast lignite mine are then presented.Moreover,the conditions for the formation of shock wave,transition wave and seismic waves are presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141010,51879184 and 12172253).
文摘Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by using the drill and blast tunneling(D&B).However,the dynamic response and failure mechanism of surrounding rocks of the existing tunnel caused by adjacent transient excavation are not clear due to the difficulty in conducting field tests and laboratory experiments.Therefore,a novel transient unloading experimental system for deep tunnel excavation was proposed in this study.The real stress path and the unloading rate can be reproduced by using this proposed system.The experiments were conducted for observing the dynamic response of the existing tunnel induced by adjacent transient excavation under different lateral pressure coefficients l(?0.4,0.6,0.8,1,1.2,1.4,1.6,1.8)with a polymethyl methacrylate(PMMA)specimen.The propagation of the impact wave and unloading surface wave was detected through the digital image correlation(DIC)analysis.The reflection of the unloading surface wave on the incident side of the existing tunnel(tunnel-E)was observed and analyzed.Moreover,the dynamic characteristics of the stress redistribution,the particle displacement and vibration velocity of surrounding rocks of tunnel-E were analyzed and summarized.In addition,the Mohr-Coulomb(MeC)failure criterion with tension cut-off was adopted to evaluate the stability of the existing tunnel under adjacent transient excavation.The results indicate that the incident side of the existing tunnel under the dynamic disturbance of transient excavation of an adjacent tunnel was more prone to fail,followed by the shadow side and the top/bottom side.
基金financially supported by the National Natural Science Foundation of China (U2039209, U1839208, and 51408564)the Natural Science Foundation of Heilongjiang Province (LH2021E119)+1 种基金Spark Program of Earthquake Science (XH23027YB)the National Key Research and Development Program of China (2018YFC1504003).
文摘It is critical to determine whether a site has potential damage in real-time after an earthquake occurs,which is a challenge in earthquake disaster reduction.Here,we propose a real-time Earthquake Potential Damage predictor(EPDor)based on predicting peak ground velocities(PGVs)of sites.The EPDor is composed of three parts:(1)predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models;(2)predicting the PGVs at distant sites based on the empirical ground motion prediction equation;(3)generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in(1)and(2).We apply the EPDor to the 2022 M_(S) 6.9 Menyuan earthquake in Qinghai Province,China to predict its potential damage.Within the initial few seconds after the first station is triggered,the EPDor can determine directly whether there is potential damage for some sites to a certain degree.Hence,we infer that the EPDor has potential application for future earthquakes.Meanwhile,it also has potential in Chinese earthquake early warning system.
文摘The aim of this study was to compare lower limb blood flow in asymptomatic diabetic patients with early-stage peripheral artery disease (PAD) and non-diabetic controls using duplex ultrasound parameters. This was a comparative cohort study of lower limb blood flow in 35 Black-African diabetic patients (25 females and 10 males with early-stage PAD median age 54 [IQR, 47 - 61] years;median HbA<sub>1c</sub> 6.3 [IQR, 5.7 - 8.0]%<sub></sub>;BMI 29.2 ± 6.7;ABI 1.1 ± 0.1) and 36 non-diabetic controls (28 females and 8 males;median age 54 [IQR, 47 - 61] years;median HbA<sub>1c</sub> 6.3 [IQR, 5.7 - 8.0] %, BMI 29.2 ± 6.7;ABI 1.1 ± 0.1). Peak systolic velocity (PSV), pulsatility index (PI) and resistive index (RI), were utilised to compare blood flow in the popliteal arteries (PA), anterior tibial arteries (ATA) and posterior tibial arteries (PTA) in addition to ankle brachial index. All the ultrasound parameters showed good (ICC ≥ 0.7;0.50 - 0.85, 95% CI) to excellent (ICC = 1.0;1.0 - 1.0, 95% CI) reliability within groups as well as acceptable variability () other than pulsatility index of the anterior tibial artery within diabetic patients (11.1% CV). PSV, RI and PI were significantly and meaningfully higher (P;d ≥ 0.33), in diabetic patients compared to non-diabetic controls except for PI - PTA (P = 0.72;d = 0.11). Differences in PSV and RI highlighted the effects of early-stage PAD on lower limb blood flow of diabetic patients. In contrast, the effects of early-stage PAD on blood flow were not demonstrated in the PTA and ATA of diabetic patients by PI.
基金supported by the National Natural Science Foundation of China under the grant No. 40872209
文摘The MS8.0 Wenchuan earthquake induced severe landslide hazards.For the first time in China,large numbers of strong motion records were obtained during the Wenchuan earthquake,providing the opportunity to study the relationships between ground-motion parameters and the earthquake-induced landslides.Nearly 40 groups of records from the main shock distributed along the Longmenshan fault lines were used to carry out this study.The results appropriate to the Longmenshan area are as follows:1 The threshold of the peak ground acceleration(PGA) is about 0.7 m/s2.When the PGA reaches 2 m/s2,the landslide hazards are very serious; 2 The threshold of the peak ground velocity(PGV) is about 0.5 m/s.When the PGV reaches 1.5 m/s,severe landslide hazards will be induced; 3 The threshold for the Arias intensity(Ia) is about 0.2 m/s.When the Ia in one horizontal direction reaches 2 m/s,landslide hazards will be very serious; 4 As for the relevance order of the parameters to earthquake-induced landslides,Ia is the leading parameter,followed by PGV,and finally PGA.The results presented in this paper are consistent with the results from other studies,indicating that the threshold of the ground motion parameters for strong earthquakes is of the same order of magnitude as that of moderate earthquakes.Landslide density of local sites fluctuated with the increase of ground motion intensity if the thresholds were reached.When the upper limits are exceeded,the landslide density remains at a certain level with relatively little variation.
文摘On the basis of 10935 broadband velocity records of 135 earthquakes (ML3.0-6.4 and epicentral distance of 26-623 km) occurred from May 12 to June l0 in 2008, which are collected from 27 bedrock stations included in Sichuan Earthquake Monitoring Network, the corresponding acceleration records are obtained by a real-time simulation method. Then by regression analysis on the data, the relation between the peak ground acceleration and velocity attenuation of small and moderate bedrock earthquakes occurred in Sichuan region is acquired. And the relation is verified by a M4.8 earthquake took place recently in Wenchuan. Finally, the attenuation relations, which are coincident to the geological conditions in Sichuan region, are proposed by studying the records from Sichuan earthquake network.
基金Joint Seismological Science Foundation of China (105034)
文摘We collect 1974 broad-band velocity records of 94 earthquakes (ML=2.84.9, △=13462 km) from seven stations of the Fujian Seismic Network from March 1999 to March 2007. Using real-time simulation, we obtain the corresponding acceleration and then adopt different models to analyze the seismic data. As a result, a new attenuation relationship between PGA and PGV of the small and moderate earthquakes on bedrock site in Fujian region is established. The Yongchun earthquake occurred recently verifies the attenuation relationship well. This paper provides a new approach for studying the ground motion attenuation relationship using velocity records.
文摘In this paper,two new methods are introduced to fit response spectrum in generating earthquake acceleration time history.The first method is Adding Harmonic Wave in Time Domain(AHWTD).In this method, a control point of response spectrum is adjusted by adding a harmonic time history to the adjusted one.Three features of the method are that it has small cross interference,small amount of computation and it can give consideration to the amplitude envelope.The second one is Approximating Response Spectrum as a Whole(ARSW).This method has following feature. When adjust a time history that is decided by amplitude spectrum A k and phase spectrum φ k(k =0, 1, 2, …, n ), the mean square root of every relative error E j(j= 1, 2, …, M ) between response spectrum and object spectrum V r=∑Mj=1E 2 j/M is used to decide adjusting direction of any amplitude spectrum A k . Because E j and V r are functions of A k and φ k , the problem of fitting response spectrum in generating earthquake acceleration time history can be changed to a problem of finding minimum point of V r . Restricted by Nyquist frequency, AHWTD is not suitable for high frequencies of response spectrum. Restricted by frequency distribution of FFT, the density of control points in the low frequency part can′t be too dense for ARSW. But two methods can replenish each other and get such a good fitting effect that we can fit the given peak ground acceleration and peak ground velocity well at the same time.
文摘The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative psychological impacts on involved personnel and also judicial complaints of local inhabitants in the nearby area. This paper presents achieved results during an investigation carried out at Sungun Copper Mine, lran. Besides, the research also studied the significance of blast induced ground vibration and air- blast on safety aspects of nearby structures, potential risks, frequency analysis, and human response. According to the United States Bureau of Mines (USBM) standard, the attenuation equations were devel- oped using field records. A general frequency analysis and risk evaluation revealed that: 94% of generated frequencies are less than 14 Hz which is within the natural frequency of structures that increases risk of damage. At the end, studies of human response showed destructive effects of the phenomena by ranging between 2.54 and 25.40 mm/s for ground vibrations and by the average value of 110 dB for noise levels which could increase sense of uncertainty among involved employees.
文摘Ground vibration is one of the side effects of blasting, in which way considerable amount of explosive energy is exhausted, and causes decrease in production and even decline in mine development workings. In this study, 57 recorded 3-C seismograms from 11 blasts in Sarcheshmeh copper mine, Kerman, Iran, are processed and analyzed. These data were recorded by digital seismograph PDAS-100 and analyzed by DADISP software. Finally, blasting parameters, such as explosive weight and type, distance between the structures and blasting site, blasting delays, affecting ground vibration are reviewed and their influence on peak particle velocity (PPV) are studied. Based on this study, suitable detonation delays and explosive type is determined. Considering these data, a graph of PPV versus scaled distance for Sarcheshmeh copper mine is prepared, by the help of which, safe distance for structures and accordingly explosive quantity could be determined.
基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX21_2378)National Natural Science Foundation of China(Grant Nos.51874292 and 51804303).
文摘Blasting technology is widely used to prevent coal bursts by presplitting the overburden in underground coal mines.The control of blasting intensity is important in achieving the optimal pre-split effectiveness and reducing the damage to roadway structures that are subjected to blasting vibrations.As a critical parameter to measure the blasting intensity,the peak particle velocity(PPV)of vibration induced by blasting,should be accurately predicted,and can provide a useful guideline for the design of blasting parameters and the evaluation of the damage.In this paper,various factors that influence PPV,induced by roof pre-split blasting,were analyzed using engineering blasting experiments and numerical simulations.The results showed that PPV was affected by many factors,including charge distribution design(total charge and maximum charge per hole),spacing of explosive centers,as well as propagation distance and path.Two parameters,average charge coefficient and spatial discretization coefficient were used to quantitatively characterize the influences of charge distribution and spacing of explosive centers on the PPV induced by roof pre-split blasting.Then,a model consisting of the combination of artificial neural network(ANN)and genetic algorithm(GA)was adopted to predict the PPV that was induced by roof presplit blasting.A total of 24 rounds of roof pre-split blasting experiments were carried out in a coal mine,and vibration signals were collected using a microseismic(MS)monitoring system to construct the neural network datasets.To verify the efficiency of the proposed GA-ANN model,empirical correlations were applied to predict PPV for the same datasets.The results showed that the GA-ANN model had superiority in predicting PPV compared to empirical correlations.Finally,sensitivity analysis was performed to evaluate the impacts of input parameters on PPV.The research results are of great significance to improve the prediction accuracy of PPV induced by roof pre-splitting blasting.