Pearling is an effective method for evaluating the distribution of chemical components in wheat grain. Five pearling fractions (representing approximately 20% of the original sample weight) of wheat grain were obtai...Pearling is an effective method for evaluating the distribution of chemical components in wheat grain. Five pearling fractions (representing approximately 20% of the original sample weight) of wheat grain were obtained using the JNMJ3 rice polisher for two cultivars with different methods of Zinc (Zn) application; the residual portion (approximately 80%) was ground as flour. Results showed that folJar or soil+foliar Zn application methods effectively increased Zn concentrations and bioavailability in whole grain and pearling fractions, but soil Zn application was ineffective in field conditions. In addition, the concentrations of Zn, Fe, Mn and Cu within wheat grain showed a diminishing trend from the outer layer to the inner portions of the wheat grain as the pearling level increased. These results cleady showed the distribution of minerals in wheat grain, especially in the outer part of the grain (bran). The results also suggest that precise milling techniques combined with foliar Zn ap- plication could improve the Zn and Fe nutritional qualities of consumed flour and mitigate human Zn and Fe deficiencies.展开更多
Peral millet being drought tolerant has substantial potential to contribute in food security ensuring the food, fodder and nutritional value in different Asian and African countries. Susceptibility to abiotic and biot...Peral millet being drought tolerant has substantial potential to contribute in food security ensuring the food, fodder and nutritional value in different Asian and African countries. Susceptibility to abiotic and biotic factors and low productivity are the main reasons for decreasing productivity and area of millets. In this context, evaluation of the effect of weed control practices and varying sowing dates on grain yield of kharif season grown pearl millet (Pennisetum americanum L.) was demonstrated at post graduate agriculture research station, University of Agriculture, Faisalabad during 2015. Forage pearl millet was sown at three different sowing dates i.e. mid-June, end of June and mid-July and four weed control practices viz. weedy check (no weeding), twice hoeing at 15 and 30 days after sowing (DAS), weed control using herbicides i.e. application of Atrazine (Awax 38 SC) @330 g a.i. ha-1 at 15 DAS, and twice foliar applications of 10% Sorghum water extract (Sorgaab) (at 15 and 30 DAS). The experiment was laid out in randomized complete block design (RCBD) under split plot arrangement, comprising of three replications. The treatments with varying sowing dates were randomized in main plots and weed control practices were in subplots. Results showed that the highest plant height (279.51 cm), leaf area (2777.80 cm2), fresh weight of leaves per plant (155.57 g), maximum number of grains per head (3162.0) and grain yield (3419.7 kg·ha-1) were obtained in the treatment combination of 30th June sowing × twice weed hoeing (at 15 and 30 DAS) while, maximum 1000-grain weight (8.45 g) was observed in treatments where weeds were controlled by hoeing (at 15 and 30 DAS). Moreover, cultural weed control practices reduce significantly weed density, fresh and dry Wight of weeds. In sum, it is concluded that to reduce the weed-crop competition and to gain higher productivity of pearl millet, field should be weed free 20 - 45 days after sowing.展开更多
基金supported by the National Natural Science Foundation of China (41371288 and 31672233)the National Key Technologies R&D Programs of China during the 12th Five-Year Plan period (2012BAD14B11)
文摘Pearling is an effective method for evaluating the distribution of chemical components in wheat grain. Five pearling fractions (representing approximately 20% of the original sample weight) of wheat grain were obtained using the JNMJ3 rice polisher for two cultivars with different methods of Zinc (Zn) application; the residual portion (approximately 80%) was ground as flour. Results showed that folJar or soil+foliar Zn application methods effectively increased Zn concentrations and bioavailability in whole grain and pearling fractions, but soil Zn application was ineffective in field conditions. In addition, the concentrations of Zn, Fe, Mn and Cu within wheat grain showed a diminishing trend from the outer layer to the inner portions of the wheat grain as the pearling level increased. These results cleady showed the distribution of minerals in wheat grain, especially in the outer part of the grain (bran). The results also suggest that precise milling techniques combined with foliar Zn ap- plication could improve the Zn and Fe nutritional qualities of consumed flour and mitigate human Zn and Fe deficiencies.
文摘Peral millet being drought tolerant has substantial potential to contribute in food security ensuring the food, fodder and nutritional value in different Asian and African countries. Susceptibility to abiotic and biotic factors and low productivity are the main reasons for decreasing productivity and area of millets. In this context, evaluation of the effect of weed control practices and varying sowing dates on grain yield of kharif season grown pearl millet (Pennisetum americanum L.) was demonstrated at post graduate agriculture research station, University of Agriculture, Faisalabad during 2015. Forage pearl millet was sown at three different sowing dates i.e. mid-June, end of June and mid-July and four weed control practices viz. weedy check (no weeding), twice hoeing at 15 and 30 days after sowing (DAS), weed control using herbicides i.e. application of Atrazine (Awax 38 SC) @330 g a.i. ha-1 at 15 DAS, and twice foliar applications of 10% Sorghum water extract (Sorgaab) (at 15 and 30 DAS). The experiment was laid out in randomized complete block design (RCBD) under split plot arrangement, comprising of three replications. The treatments with varying sowing dates were randomized in main plots and weed control practices were in subplots. Results showed that the highest plant height (279.51 cm), leaf area (2777.80 cm2), fresh weight of leaves per plant (155.57 g), maximum number of grains per head (3162.0) and grain yield (3419.7 kg·ha-1) were obtained in the treatment combination of 30th June sowing × twice weed hoeing (at 15 and 30 DAS) while, maximum 1000-grain weight (8.45 g) was observed in treatments where weeds were controlled by hoeing (at 15 and 30 DAS). Moreover, cultural weed control practices reduce significantly weed density, fresh and dry Wight of weeds. In sum, it is concluded that to reduce the weed-crop competition and to gain higher productivity of pearl millet, field should be weed free 20 - 45 days after sowing.