Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference ...Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.展开更多
Understanding the composition and contents of carotenoids in various soybean seed accessions is important for their nutritional assessment.This study investigated the variability in the concentrations of carotenoids a...Understanding the composition and contents of carotenoids in various soybean seed accessions is important for their nutritional assessment.This study investigated the variability in the concentrations of carotenoids and chlorophylls and revealed their associations with other nutritional quality traits in a genetically diverse set of Chinese soybean accessions comprised of cultivars and landraces.Genotype,planting year,accession type,seed cotyledon color,and ecoregion of origin significantly influenced the accumulation of carotenoids and chlorophylls.The mean total carotenoid content was in the range of 8.15–14.72μg g–1 across the ecoregions.The total carotenoid content was 1.2-fold higher in the landraces than in the cultivars.Soybeans with green cotyledons had higher contents of carotenoids and chlorophylls than those with yellow cotyledons.Remarkably,lutein was the most abundant carotenoid in all the germplasms,ranging from 1.35–37.44μg g–1.Carotenoids and chlorophylls showed significant correlations with other quality traits,which will help to set breeding strategies for enhancing soybean carotenoids without affecting the other components.Collectively,our results demonstrate that carotenoids are adequately accumulated in soybean seeds,however,they are strongly influenced by genetic factors,accession type,and germplasm origin.We identified novel germplasms with the highest total carotenoid contents across the various ecoregions of China that could serve as the genetic materials for soybean carotenoid breeding programs,and thereby as the raw materials for food sectors,pharmaceuticals,and the cosmetic industry.展开更多
Va R(在险价值 )方法被广泛地应用在金融市场风险管理中 .传统的计算 Va R方法——历史模拟法 ,Risk Metrics方法和 Monte Carlo模拟法 ,都不能对市场风险分布的“厚尾”现象给出较满意的分布和计算方法 .本文把 Pearson 分布应用到 Va ...Va R(在险价值 )方法被广泛地应用在金融市场风险管理中 .传统的计算 Va R方法——历史模拟法 ,Risk Metrics方法和 Monte Carlo模拟法 ,都不能对市场风险分布的“厚尾”现象给出较满意的分布和计算方法 .本文把 Pearson 分布应用到 Va R模型的计算中 ,得到了很好的效果 .展开更多
The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypot...The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypothese. To achieve the better performance at the fusion center for a general detection system of n 〉 3 sensor configuration, the necessary and sufficient conditions are derived by comparing the probability of detec- tion at the fusion center with that of each of the sensors, with the constraint that the probability of false alarm at the fusion center is equal to that of the sensor. The conditions are related with the performances of the sensors and using the results we can predict the performance at the fusion center of a distributed detection system and can choose appropriate sensors to construct efficient distributed detection systems.展开更多
文摘Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.
基金financially supported by the National Natural Science Foundation of China(32161143033 and 32001574)the Agricultural Science and Technology Innovation Program of CAAS(2060203-2).
文摘Understanding the composition and contents of carotenoids in various soybean seed accessions is important for their nutritional assessment.This study investigated the variability in the concentrations of carotenoids and chlorophylls and revealed their associations with other nutritional quality traits in a genetically diverse set of Chinese soybean accessions comprised of cultivars and landraces.Genotype,planting year,accession type,seed cotyledon color,and ecoregion of origin significantly influenced the accumulation of carotenoids and chlorophylls.The mean total carotenoid content was in the range of 8.15–14.72μg g–1 across the ecoregions.The total carotenoid content was 1.2-fold higher in the landraces than in the cultivars.Soybeans with green cotyledons had higher contents of carotenoids and chlorophylls than those with yellow cotyledons.Remarkably,lutein was the most abundant carotenoid in all the germplasms,ranging from 1.35–37.44μg g–1.Carotenoids and chlorophylls showed significant correlations with other quality traits,which will help to set breeding strategies for enhancing soybean carotenoids without affecting the other components.Collectively,our results demonstrate that carotenoids are adequately accumulated in soybean seeds,however,they are strongly influenced by genetic factors,accession type,and germplasm origin.We identified novel germplasms with the highest total carotenoid contents across the various ecoregions of China that could serve as the genetic materials for soybean carotenoid breeding programs,and thereby as the raw materials for food sectors,pharmaceuticals,and the cosmetic industry.
基金Sponsored by the National Natural Science Foundation of China(60232010)
文摘The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypothese. To achieve the better performance at the fusion center for a general detection system of n 〉 3 sensor configuration, the necessary and sufficient conditions are derived by comparing the probability of detec- tion at the fusion center with that of each of the sensors, with the constraint that the probability of false alarm at the fusion center is equal to that of the sensor. The conditions are related with the performances of the sensors and using the results we can predict the performance at the fusion center of a distributed detection system and can choose appropriate sensors to construct efficient distributed detection systems.