Neyman-Pearson classification has been studied in several articles before. But they all proceeded in the classes of indicator functions with indicator function as the loss function, which make the calculation to be di...Neyman-Pearson classification has been studied in several articles before. But they all proceeded in the classes of indicator functions with indicator function as the loss function, which make the calculation to be difficult. This paper investigates Neyman- Pearson classification with convex loss function in the arbitrary class of real measurable functions. A general condition is given under which Neyman-Pearson classification with convex loss function has the same classifier as that with indicator loss function. We give analysis to NP-ERM with convex loss function and prove it's performance guarantees. An example of complexity penalty pair about convex loss function risk in terms of Rademacher averages is studied, which produces a tight PAC bound of the NP-ERM with convex loss function.展开更多
Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, suc...Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods.展开更多
Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been propose...Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been proposed currently, including the low-order Pearson’s correlation (PC) and sparse representation (SR), as well as the high-order functional connection (HoFC). However, most existing methods usually ignore the information of topological structures of FBN, such as low-rank structure which can reduce the noise and improve modularity to enhance the stability of networks. In this paper, we propose a novel method for improving the estimated FBNs utilizing matrix factorization (MF). More specifically, we firstly construct FBNs based on three traditional methods, including PC, SR, and HoFC. Then, we reduce the rank of these FBNs via MF model for estimating FBN with low-rank structure. Finally, to evaluate the effectiveness of the proposed method, experiments have been conducted to identify the subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) from norm controls (NCs) using the estimated FBNs. The results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrate that the classification performances achieved by our proposed method are better than the selected baseline methods.展开更多
基金This is a Plenary Report on the International Symposium on Approximation Theory and Remote SensingApplications held in Kunming, China in April 2006Supported in part by NSF of China under grants 10571010 , 10171007 and Startup Grant for Doctoral Researchof Beijing University of Technology
文摘Neyman-Pearson classification has been studied in several articles before. But they all proceeded in the classes of indicator functions with indicator function as the loss function, which make the calculation to be difficult. This paper investigates Neyman- Pearson classification with convex loss function in the arbitrary class of real measurable functions. A general condition is given under which Neyman-Pearson classification with convex loss function has the same classifier as that with indicator loss function. We give analysis to NP-ERM with convex loss function and prove it's performance guarantees. An example of complexity penalty pair about convex loss function risk in terms of Rademacher averages is studied, which produces a tight PAC bound of the NP-ERM with convex loss function.
文摘Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods.
文摘Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been proposed currently, including the low-order Pearson’s correlation (PC) and sparse representation (SR), as well as the high-order functional connection (HoFC). However, most existing methods usually ignore the information of topological structures of FBN, such as low-rank structure which can reduce the noise and improve modularity to enhance the stability of networks. In this paper, we propose a novel method for improving the estimated FBNs utilizing matrix factorization (MF). More specifically, we firstly construct FBNs based on three traditional methods, including PC, SR, and HoFC. Then, we reduce the rank of these FBNs via MF model for estimating FBN with low-rank structure. Finally, to evaluate the effectiveness of the proposed method, experiments have been conducted to identify the subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) from norm controls (NCs) using the estimated FBNs. The results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrate that the classification performances achieved by our proposed method are better than the selected baseline methods.