The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
Recent developments have demonstrated that the brake pedal simulator(BPS)is becoming an indispensable apparatus for the break-by-wire systems in future electric vehicles.Its main function is to provide the driver with...Recent developments have demonstrated that the brake pedal simulator(BPS)is becoming an indispensable apparatus for the break-by-wire systems in future electric vehicles.Its main function is to provide the driver with a comfortable pedal feel to improve braking safety and comfort.This paper presents the development and control of an adjustable BPS,using a disk-type magnetorheological(MR)damper as the passive braking reaction generator to simulate the traditional pedal feel.A detailed description of the mechanical design of the MR damper-based BSP(MRDBBPS)is presented in this paper.Several basic performance experiments on the MRDBBPS prototype are conducted.A returnto-zero(RTZ)algorithm is proposed to avoid hysteresis and improve the repeatability of the pedal force.In addition,an RTZ algorithm-based real-time current-tracking controller(RTZRC)is designed in consideration of the response lag of the coil circuit.Finally,an experimental system is established by integrating the MRDBBPS prototype into a selfdeveloped automotive MR braking test bench(AMRBTB),and several control and braking experiments are performed.This research proposes a RTZRC control algorithm which can significantly increase the tracking accuracy of the brake pedal characteristic curve,particularly at a high pedal velocity.Additionally,the designed MRDBBPS prototype can achieve an effective and favorable control of the AMRBTB with a good repeatability.展开更多
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
基金National Natural Science Foundation of China(Grant Nos.52175047 and 51505114)Anhui Provincial Natural Science Foundation of China(Grant No.2008085ME140).
文摘Recent developments have demonstrated that the brake pedal simulator(BPS)is becoming an indispensable apparatus for the break-by-wire systems in future electric vehicles.Its main function is to provide the driver with a comfortable pedal feel to improve braking safety and comfort.This paper presents the development and control of an adjustable BPS,using a disk-type magnetorheological(MR)damper as the passive braking reaction generator to simulate the traditional pedal feel.A detailed description of the mechanical design of the MR damper-based BSP(MRDBBPS)is presented in this paper.Several basic performance experiments on the MRDBBPS prototype are conducted.A returnto-zero(RTZ)algorithm is proposed to avoid hysteresis and improve the repeatability of the pedal force.In addition,an RTZ algorithm-based real-time current-tracking controller(RTZRC)is designed in consideration of the response lag of the coil circuit.Finally,an experimental system is established by integrating the MRDBBPS prototype into a selfdeveloped automotive MR braking test bench(AMRBTB),and several control and braking experiments are performed.This research proposes a RTZRC control algorithm which can significantly increase the tracking accuracy of the brake pedal characteristic curve,particularly at a high pedal velocity.Additionally,the designed MRDBBPS prototype can achieve an effective and favorable control of the AMRBTB with a good repeatability.