Techniques for predicting the trajectory of vulnerable road users are important to the development of perception systems for autonomous vehicles to avoid accidents.The most effective trajectory prediction methods,such...Techniques for predicting the trajectory of vulnerable road users are important to the development of perception systems for autonomous vehicles to avoid accidents.The most effective trajectory prediction methods,such as Social-LSTM,are often used to predict pedestrian trajectories in normal passage scenarios.However,they can produce unsatisfactory prediction results and data redundancy,as well as difficulties in predicting trajectories using pixel-based coordinate systems in collision avoidance systems.There is also a lack of validations using real vehicle-to-pedestrian collisions.To address these issues,some insightful approaches to improve the trajectory prediction scheme of Social-LSTM were proposed,such methods included transforming pedestrian trajectory coordinates and converting image coordinates to world coordinates.The YOLOv5 detection model was introduced to reduce target loss and improve prediction accuracy.The DeepSORT algorithm was employed to reduce the number of target transformations in the tracking model.Image Perspective Transformation(IPT)and Direct Linear Transformation(DLT)theories were combined to transform the coordinates to world coordinates,identifying the collision location where the accident could occur.The performance of the proposed method was validated by training tests using MS COCO(Microsoft Common Objects in Context)and ETH/UCY datasets.The results showed that the target detection accuracy was more than 90%and the prediction loss tends to decrease with increasing training steps,with the final loss value less than 1%.The reliability and effectiveness of the improved method were demonstrated by benchmarking system performance to two video recordings of real pedestrian accidents with different lighting conditions.展开更多
Accurate pedestrian trajectory predictions are critical in self-driving systems,as they are fundamental to the response-and decision-making of ego vehicles.In this study,we focus on the problem of predicting the futur...Accurate pedestrian trajectory predictions are critical in self-driving systems,as they are fundamental to the response-and decision-making of ego vehicles.In this study,we focus on the problem of predicting the future trajectory of pedestrians from a first-person perspective.Most existing trajectory prediction methods from the first-person view copy the bird’s-eye view,neglecting the differences between the two.To this end,we clarify the differences between the two views and highlight the importance of action-aware trajectory prediction in the first-person view.We propose a new action-aware network based on an encoder-decoder framework with an action prediction and a goal estimation branch at the end of the encoder.In the decoder part,bidirectional long short-term memory(Bi-LSTM)blocks are adopted to generate the ultimate prediction of pedestrians’future trajectories.Our method was evaluated on a public dataset and achieved a competitive performance,compared with other approaches.An ablation study demonstrates the effectiveness of the action prediction branch.展开更多
基金support of the Natural Science Foundation of China(Grant No.51775466)the Xiamen City Natural Science Foundation(No.3502Z20227223).
文摘Techniques for predicting the trajectory of vulnerable road users are important to the development of perception systems for autonomous vehicles to avoid accidents.The most effective trajectory prediction methods,such as Social-LSTM,are often used to predict pedestrian trajectories in normal passage scenarios.However,they can produce unsatisfactory prediction results and data redundancy,as well as difficulties in predicting trajectories using pixel-based coordinate systems in collision avoidance systems.There is also a lack of validations using real vehicle-to-pedestrian collisions.To address these issues,some insightful approaches to improve the trajectory prediction scheme of Social-LSTM were proposed,such methods included transforming pedestrian trajectory coordinates and converting image coordinates to world coordinates.The YOLOv5 detection model was introduced to reduce target loss and improve prediction accuracy.The DeepSORT algorithm was employed to reduce the number of target transformations in the tracking model.Image Perspective Transformation(IPT)and Direct Linear Transformation(DLT)theories were combined to transform the coordinates to world coordinates,identifying the collision location where the accident could occur.The performance of the proposed method was validated by training tests using MS COCO(Microsoft Common Objects in Context)and ETH/UCY datasets.The results showed that the target detection accuracy was more than 90%and the prediction loss tends to decrease with increasing training steps,with the final loss value less than 1%.The reliability and effectiveness of the improved method were demonstrated by benchmarking system performance to two video recordings of real pedestrian accidents with different lighting conditions.
文摘Accurate pedestrian trajectory predictions are critical in self-driving systems,as they are fundamental to the response-and decision-making of ego vehicles.In this study,we focus on the problem of predicting the future trajectory of pedestrians from a first-person perspective.Most existing trajectory prediction methods from the first-person view copy the bird’s-eye view,neglecting the differences between the two.To this end,we clarify the differences between the two views and highlight the importance of action-aware trajectory prediction in the first-person view.We propose a new action-aware network based on an encoder-decoder framework with an action prediction and a goal estimation branch at the end of the encoder.In the decoder part,bidirectional long short-term memory(Bi-LSTM)blocks are adopted to generate the ultimate prediction of pedestrians’future trajectories.Our method was evaluated on a public dataset and achieved a competitive performance,compared with other approaches.An ablation study demonstrates the effectiveness of the action prediction branch.