期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Rare-Element Pegmatites Rocks Rich and Li of the Aïr Massif of the Tchirozerine: Mineralogy and Chemical Composition Agadez Region-Northem Niger
1
作者 Ntoumbé Mama Hamza Bassara +2 位作者 Amaya Adama Awona Paul Zéphyrin Nomenjanahary Limbisoa 《Open Journal of Applied Sciences》 2024年第1期171-181,共11页
The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are ... The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are located near the contact between the greenstone belt and granitic massif. The evidence of lithium is in the form of clusters or disseminated and stockwerk. Mineralogical characteristics show similarities between the Air Massif pegmatites and indicate the same homogenous source during the magma-generation process. The pegmatite rocks attracted the attention due to their wide exposure and composition, well appearance, and economically hosting of significant rare earth metals such as Sn and W. The mineralogical and petrographical investigations on the eight pegmatites rocks samples observed have a relative similarity, while a little difference in the shapes attributed to the ratio in the pegmatite rocks of the minerals. The occurrence of the kink band indicates the influence of the tectonic processes which affected the Aïr massif after the emplacement of late magmatic or post-magmatic pegmatites by injection into fractured rocks in the upper part of the crust. The Air Massif pegmatite has higher concentrations Li and of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg of for the economic exploration. 展开更多
关键词 PEGMATITE Lithium Rare Elements Hydrothermal Processes Aïr Massif
下载PDF
Geology and Mineral Chemistry of Uranium-and Thorium-bearing Minerals in Rare-Metal(NYF)Pegmatites of Um Solimate,South Eastern Desert,Egypt
2
作者 Mohamed A.ALI Ahmed E.ABDEL GAWAD Mohamed M.GHONEIM 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第5期1568-1582,共15页
The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masse... The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masses,pockets and/or veins of very coarse-grained pegmatites,which consist mainly of K-feldspar,quartz and albite with subordinate muscovite,garnet,and biotite.Radiometric data revealed that e U-and e Th-contents of the pegmatites reach up to 39 ppm and 82 ppm,respectively.The studied pegmatites are enriched in primary U and Th minerals(uraninite,coffinite,thorianite and uranothorite)as well as Hf-rich zircon and monazite,which give rise to anomalous radioactive zones.Niobium-tantalium-bearing minerals(i.e.ferrocolumbite,microlite and uranopyrochlore),xenotime,barite,galena,fluorite,and apatite are ubiquitous,and,consequently,the studied pegmatites belong tothe Niobium-Yttrium-Fluorine-type(NYF)family.The noble metal mineralization includes argentite(Ag_(2)S),native Ni and Bi as well as bismite and bismoclite.In addition,beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies.The observed compositional variations of Ta/(Ta+Nb)and Mn/(Mn+Fe)ratios in columbite(0.08-0.45 and 0.11-0.57,respectively)and Hf contents in zircon(3.54-6.46 wt%)may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody. 展开更多
关键词 radioactivity rare-metal mineralization pegmatites U/Th-bearing minerals Um Solimate EGYPT
下载PDF
Petrogenetic and Metallogenetic Characteristics of the Xikeng Granitic Pegmatites, Fujian Province
3
作者 杨岳清 倪云祥 +6 位作者 郭永泉 仇年铭 陈成湖 蔡朝发 张亚萍 刘加斌 陈月仙 《Chinese Journal Of Geochemistry》 EI CAS 1988年第2期120-135,共16页
The Xikeng pegmatite field lies on the eastern margin of the south China fold system in Fujian Province,and it is located at the junction of three major tectonic units. The distribution of pegmatites is obviously cont... The Xikeng pegmatite field lies on the eastern margin of the south China fold system in Fujian Province,and it is located at the junction of three major tectonic units. The distribution of pegmatites is obviously controlled by the fold system.There exists apparent in jectionrelationship between the pegmatites and the surrounding Sinian schist and granulitite.The granitoidsextensively distributed in the field belong either to the Variscan or to the Yenshanian cycle,and it is evidentthat the pegmatites are genetically related to Variscan migmatitic granites. The pegmatites can be grouped into four types:muscovite-orthoclase-albite pegmatite(I).muscovitedlbite-orthoclase pegmatite(Ⅱ),muscovite-orthoclase-albite pegmatite(Ⅲ),and muscovite-albitespodumene pegmatite(IV).Owing to strong metasomatism and multi-stage emplacement of pegmatitic meltsolution,the sequence of interior assemblage zones in the pegmatites does not always represent the sequenceof original crystallization. The mineral composition of the pegmatites is extremely complicated.81 kinds of minerals have so farbeen found、From type I to type IV,the mineral assemblage tend to get increasingly complex.together withthe synchronous intensification of rare-metal and Sn mineralizations.Most of the type-IV pegmatites are ofeconomic value The features of fluid inclusions in the minerals are significantly different not only in different typos ofpegmatite,but also in different parts of a single pegmatite vein.Theδ18O values of migmatitic granite andpegmatites are comparatively low(9.3-10.4‰),and those of rock-forming fluids are higher than 9.5‰ Isotopic ages of the pegmatites brangs from 235 to 328 Ma with initial 87Sr/86Sr ratios being ”.715-0.746. According to the temporal and spatial relationships between the pegmatites and the migmatitic granitecombined with the features of the pegmatites themselves,it can be concluded that the Xikeng pegmatites arethe product of differentiation closely related to the migmatitic granite. 展开更多
关键词 Petrogenetic and Metallogenetic Characteristics of the Xikeng Granitic pegmatites Fujian Province TA THAN
下载PDF
Emplacement and Evolution History of Pegmatites and Hydrothermal Deposits, Matale District, Sri Lanka
4
作者 G.W.A.R Fernando A Pitawala T.H.N.G Amaraweera 《International Journal of Geosciences》 2011年第3期348-362,共15页
Excellent outcrops in Matale Sri Lanka provide unique insight into the emplacement and evolution history of hydrothermal and pegmatitic rocks in the central highlands of Sri Lanka. Field, structural, petrological, the... Excellent outcrops in Matale Sri Lanka provide unique insight into the emplacement and evolution history of hydrothermal and pegmatitic rocks in the central highlands of Sri Lanka. Field, structural, petrological, thermo-barometric studies in the metamorphic basement rocks in the central highlands and related hydrothermal deposits are presented in this study. Detailed petrographic and mineralogical data reveal peak metamorphic conditions for the crustal unit in the study area as 854 ± 44oC at 10.83 ± 0.86 kbar. Hydrothermal veins consisting of quartz and mica are closely related to cross-cutting pegmatites, which significantly post-date the peak metamorphic conditions of the crustal unit. Field relations indicate that the veins originated as ductile-brittle fractures have subsequently sealed by pegmatites and hydrothermal crystallization. Geological, textural and mineralogical data suggest that most enriched hydrothermal veins have evolved from a fractionated granitic melt progressively enriched in H2O, F, etc. Quartz, K-feldspar, mica, tourmaline, fluorite and topaz bear evidence of multistage crystallization that alternated with episodes of resorption. It was suggested that the level of emplacement of pegmatites of the Matale District was middle crust, near the crustal scale brittle-ductile transition zone at a temperature of about 600oC. For this crustal level and temperature range, it is considered very unlikely that intruding pegmatitic melts followed pre-existing cracks. As such the emplacement temperatures of the pegmatites could be well below the peak metamorphic estimates in the mafic granulites. The metamorphic P-T strategy and position of formation of hydrothermal deposits and pegmatites is summarized in the modified P-T-t-D diagrams. 展开更多
关键词 HYDROTHERMAL VEINS pegmatites EMPLACEMENT history BRITTLE deformation SRI Lanka
下载PDF
Rare Metals (Ta-Nb-Sn) Mineralization Potential of Pegmatites of Igangan Area, Southwestern Nigeria
5
作者 Olusegun G. Olisa Olugbenga A. Okunlola Ayotunde A. Omitogun 《Journal of Geoscience and Environment Protection》 2018年第4期67-88,共22页
The study was carried out to determine the rare metal mineralization potential of some pegmatites associated with metasediments in the Igangan 240 NW sheet. Geological mapping on a scale of 1:50,000 revealed the pegma... The study was carried out to determine the rare metal mineralization potential of some pegmatites associated with metasediments in the Igangan 240 NW sheet. Geological mapping on a scale of 1:50,000 revealed the pegmatites intrude metasediments and geochemical analysis for major, trace and rare earth elements were carried out using ICP MS/AES. Petrographic studies reveal a mineral assemblage of quartz, microcline and tourmaline;SEM studies revealed garnet and tourmaline to be close to the spessartine end-member and schorl respectively with albite occurring as the dominant plagioclase feldspar in the pegmatites. Result of geochemical analysis revealed SiO2 with an average of 73.91% in the whole rock pegmatite Al2O3 with an average of 13.93%, and average concentration of 0.57%, 4.3% and 4.77% for CaO, Na2O and K2O respectively. It also revealed average concentration of 29 ppm, 153 ppm, 30 ppm, 118 ppm and 129 ppm for W, Li, Ta, Nb and Sn in the mica respectively which is above the average values in the whole rock, felspars and tourmaline extracts. REE abundance in the whole rock pegmatites is low to moderate with ∑REE varying between 8 - 220 ppm, 2 - 23 ppm in feldspars and 3 - 32 ppm in mica signifying no form of REE enrichment. Geochemical analysis results and trace elemental plots such as K/Rb vs. Rb, Ta vs. Ga, Ta vs. Cs were used to assess rare metal mineralization and it revealed the pegmatites have low level of rare metal and rare earth element mineralization with average k/Rb values of 177 indicative of low fractionation levels in the pegmatites. 展开更多
关键词 RARE METALS MINERALIZATION RARE Earth Elements pegmatites
下载PDF
Neoproterozoic Rare Element Pegmatites from Gitarama and Gatumba Areas, Rwanda: Understanding Their Nb-Ta and Sn Mineralisation
6
作者 Jean de Dieu Ndikumana Anthony Temidayo Bolarinwa Gabriel Oladapo Adeyemi 《Open Journal of Geology》 2019年第13期1069-1083,共15页
The aim of this work was to study the petrography, geochemistry of the pegmatites, their relationship to the mineralisation in Gitarama and Gatumba areas, and current processes that occurred after the primary emplaced... The aim of this work was to study the petrography, geochemistry of the pegmatites, their relationship to the mineralisation in Gitarama and Gatumba areas, and current processes that occurred after the primary emplaced neoproterozoic rare element pegmatites. Previous works on pegmatites were geochemistry and geological maps which are not enough for focused exploration and mine planning. Therefore, geological, petrographic, geochemical studies of neoproterozoic rare element pegmatites of Gatumba and Gitarama areas in relation to their mineralisation were carried out. The samples were analysed for mineral assemblages by petrographic light microscope;major elements by ICP AES;trace and rare earth elements by ICP MS. Petrographic studies revealed the mineral assemblages included quartz, microcline, biotite and major muscovites, which implied that there was the process of muscovitisation occurred after the primary emplacement of pegmatites. The results of geochemical analysis revealed that the silica content (in wt%) ranges from 59.5 - 80.5 with an average of 67.13 (in wt%) for the weathered pegmatite in Gatumba area ,and high percentages of SiO2 (in wt%) range 73.9 - 75.0 with an average of 73.15 (in wt%) for fresh pegmatite in Gitarama area. The pegmatites from Gatumba area were altered and much enriched in Rb (227 - 3460 ppm), Cs (2.59 - 24.7 ppm), Ta (2.6 - 268 ppm), Li (40 - 9224 ppm), W (240 - 10,000 ppm), Nb (13 - 517 ppm), Sn (24 - 8870 ppm). Their enrichment is commonly used as a marker of a magmatic-hydrothermal alteration. Conversely, the pegmatites from Gitarama area showed the low to moderate concentrations in Rb (321 - 337 ppm), Cs (5.47 - 5.62 ppm), Ta (1.3 - 1.6 ppm), Li (~20 ppm), W (5540 - 6410 ppm), Nb (3.9 - 4.3 ppm), Sn (28 - 44 ppm). The variation plot of ratios: Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) for the pegmatites from study areas are higher than one (A/NK vs. A/CNK > 1) indicating peraluminous, the other samples of pegmatites indicated metaluminous (A/NK > 1 and A/CNK &Sigma;REE varying between 12.1 - 72.78 ppm and 45 - 54.37 ppm respectively, signifying low to medium form of enrichment. The pegmatite from Gatumba and Gitarama areas showed the K/Rb ratios ranging from 15.74 to 80.26 and from 190.41 to 199.39 respectively. As the pegmatite samples show K/Rb ratios less than 100 are commonly accepted for mineralization, therefore the pegmatites from Gatumba area were found mineralised, conversely to the pegmatite samples from Gitarama area, which were found barren. 展开更多
关键词 pegmatites PETROGRAPHY GEOCHEMISTRY Gitarama Gatumba
下载PDF
Neoproterozoic U-Th-REE-bearing Pegmatites in Wadi Ibib, South Eastern Desert, Egypt: Structural and Geochemical Measures for a Syn-Tectonic Anatectic Model of Formation
7
作者 Waleed S.IBRAHIM 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期2045-2062,共18页
The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone(HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape st... The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone(HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape structure. Amphibolite facies pelitic metasedimentary windows crop out in the axial parts of the HSZ and are noticeably associated with numerous N-trending pegmatite dikes. Whole-rock geochemistry of the pegmatites reveals a peraluminous(S-type) affinity, with low K/Rb ratios and elevated concentrations of U, Th, REE, Rb, Li, Cs, Y, Nb and Ta. Structurally, the pegmatite sets intrude along the shear plane of the HSZ, corresponding to the regional N-trending tectonic fabrics, such as axial planar foliation and dextral-shearing in the metasedimentary host rock. Field relationships, including structural context, coupled with geochemical characteristics of the Wadi Ibib pegmatites, do not support their formation as a complementary part of evolved granitic magmas. Space-localized decompression-induced partial melting of peraluminous garnet-bearing metapelites was alternatively the underlying process for formation of these pegmatites. Such decompression was associated with regional escape tectonics and stress axes permutations during the late deformation stage(D3) in the evolution of the south Eastern Desert terrane, due to end-orogeny system pressure-release. 展开更多
关键词 U-Th-REE mineralization anataxis pegmatite origin Hamisana Shear Zone Wadi Ibib EGYPT
下载PDF
P-Li-Be Bearing Pegmatites of the South East Brazil
8
作者 Essaid Bilal Adolf Heinrich Horn Fernando Machado de Mello 《International Journal of Geosciences》 2012年第2期281-288,共8页
The P-Li-Nb pegmatites are located in the south of Brazil, in the states of Minas Gerais and Espirito Santos. They represent the largest pegmatite fields of Brazil and the richest in precious stones. Two types of pegm... The P-Li-Nb pegmatites are located in the south of Brazil, in the states of Minas Gerais and Espirito Santos. They represent the largest pegmatite fields of Brazil and the richest in precious stones. Two types of pegmatites are characterized by their mineralogical characteristics and tectonic and magmatic relations. The first group occurred during a compressive deformation phase D1 about 582 Ma and 550℃ - 700℃ and 4 - 5 kb. The second pegmatites group was formed during the decompression phase D2 (520 - 500 Ma) of the Brasiliano metamorphic rock fusion. The geochemical parameters of the P-Li-Be bearing pegmatites of the first group show the same trend fractionation, as suggested by the mineralogical composition. The variation of tourmaline and columbite-tantalite composition of the first group game again applies a change of melt composition during the regional development of the pegmatites. A systematic compositional trend seems to suggest a petrogenetic link between the pegmatites of the region. The Fe/Mn ratio of tourmaline in samples of the first group shows the same behavior as in columbite-tantalite and garnets. The simple pegmatites are transiting north in the gem-rich pegmatites. The Fe/Mn ratio not only shows qualitatively the fractionation index, the degree of regional development, but also the internal development of the body. The ratio shows a negative correlation with lithium. The Co, Zn and Nb contents are rising at first group, but falling when starting crystallization of garnet, columbite-tantalite, and Behierit. 展开更多
关键词 GEM Rich PEGMATITE Phosphate LI TOURMALINE BERYL Triphylite Ferrisiklerite Heterosite
下载PDF
Age and geochemical evolution of granite magmatism in Olkhon region from Caledonian syncollisional ore-free granite to the rare metal granite and pegmatite of Middle Paleozoic intraplate setting
9
作者 Viktor Antipin Valentina Makrygina +1 位作者 Larisa Kushch Nataliya Sheptyakova 《China Geology》 CAS CSCD 2024年第1期63-79,共17页
The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gnei... The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite. 展开更多
关键词 PEGMATITE Geochemistry Submantle plume MAGMATISM Caledonian collision Middle Paleozoic intraplate setting Be-Rb-Nb-Ta-Li-F mineralization Olkhon region Russia
下载PDF
Crystalline-fluid melt inclusions in aquamarines in pegmatites of different origins
10
作者 LI Zhaolin, LI Wen and ZHAI Wei Department of Earth Science, Zhongshan University, Guangzhou 510275, China 《Chinese Science Bulletin》 SCIE EI CAS 1999年第S2期154-156,共3页
THE crystalline-fluid melt inclusions in aquamarines in pegmatites from Mufushan (Hunan Prov.) andAilaoshan (Yunnan Prov.) have been studied. The research shows that there are obvious differences inthe chemical compos... THE crystalline-fluid melt inclusions in aquamarines in pegmatites from Mufushan (Hunan Prov.) andAilaoshan (Yunnan Prov.) have been studied. The research shows that there are obvious differences inthe chemical composition of the inclusions in the aquamarines, which is of great importance for studyingthe forming mechanism and origin of pegmatites. 1 General geology of pegmatites Mufushan is situated in the middle sector of the Jiangnan Ancient Land. The granitic pegmatitesmainly outcrop in granite mass of late Yanshanian (105-145 Ma) which was intruded in middle sector ofthe middle Proterozoic strata. Part of the pegmatites occur in the contact zone of the granite and the metamorphic rocks. The pegmatite veins may be divided into four types, all of them were originated from mag- 展开更多
关键词 crystalline-fluid MELT INCLUSIONS aquamarine pegmatites origin.
原文传递
Genesis of the Jiajika superlarge lithium deposit,Sichuan,China:constraints from He–Ar–H–O isotopes
11
作者 Tao Liu Hai Wang +6 位作者 Shihong Tian Denghong Wang Xianfang Li Xiaofang Fu Xuefeng Hao Yujie Zhang Kejun Hou 《Acta Geochimica》 EI CAS CSCD 2023年第3期517-534,共18页
The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralo... The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralogy of pegmatites and their parental source rocks to determine the genesis of the deposit.However,the evolution of magmatic-hydrothermal fluids has received limited attention.We analyzed He–Ar–H–O isotopes to decipher the ore-fluid nature and identify the contribution of fluids to mineralization in the late stage of crystallization differentiation.In the Jiajika ore field,two-mica granites,pegmatites(including common pegmatites and spodumene pegmatites),metasandstones,and schists are the dominant rock types exposed.Common pegmatites derived from early differentiation of the two-mica granitic magmas before they evolved into spodumene pegmatites during the late stage of the magmatic evolution.Common pegmatites have~3He/~4He ratios that vary from 0.18 to 4.68 Ra(mean1.62 Ra),and their~(40)Ar/~(36)Ar ratios range from 426.70 to 1408.06(mean 761.81);spodumene pegmatites have~3He/~4He ratios that vary from 0.18 to 2.66 Ra(mean 0.87Ra)and their~(40)Ar/~(36)Ar ratios range from 402.13 to 1907.34(mean 801.65).These data indicate that the hydrothermal fluids were shown a mixture of crust-and mantle-derived materials,and the proportion of crustderived materials in spodumene pegmatites increases significantly in the late stage of the magmatic evolution.Theδ~(18)OH_(2)O–VSMOWvalues of common pegmatites range from 6.2‰to 10.9‰,with a mean value of 8.6‰,andδDV–SMOWvalues vary from-110‰to-72‰,with a mean o f-85‰.Theδ~(18)OH_(2)O–VSMOWvalues of spodumene pegmatites range from 5.3‰to 13.2‰,with a mean of 9.1‰,andδDV–SMOWvalues vary from-115‰to-77‰,with a mean of-91‰.These data suggest that the ore-forming fluids came from primary magmatic water gradually mixing with more meteoric water in the late stage of the magmatic evolution.Based on the He–Ar–H–O and other existing data,we propose that the oreforming metals are mainly derived from the upper continental crust with a minor contribution from the mantle,and the fluid exsolution and addition of meteoric water during the formation of pegmatite contributed to the formation of the Jiajika superlarge lithium deposit. 展开更多
关键词 He–Ar–H–O isotopes Magmatic-hydrothermal fluids Common pegmatites Spodumene pegmatites Jiajika superlarge lithium deposit SICHUAN
下载PDF
Lithium-bearing Pegmatite Exploration in Western Altun,Xinjiang,using Remote-Sensing Technology 被引量:2
12
作者 JIANG Qi DAI Jingjing +2 位作者 WANG Denghong WANG Chenghui TIAN Shufang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第2期681-694,共14页
Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-... Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-bearing pegmatites.Therefore,remote-sensing techniques can be an effective means for prospecting Li-bearing pegmatites.In this study,the fault information and lithologyical information in the region were obtained using the median-resolution remotesensing image Landsat-8,the radar image Sentinel-1 and hyperspectral data GF-5.Using Landsat-8 data,the hydroxyl alteration information closely related to pegmatite in the region was extracted by principal component analysis,pseudoanomaly processing and other methods.The high spatial resolution remote-sensing data WorldView-2 and WorldView-3 short-wave infrared images were used and analyzed by principal component analysis(PCA),the band ratio method and multi-class machine learning(ML),combined with conventional thresholds specified the algorithms used to automatically extract Li-bearing pegmatite information.Finally,the Li-bearing pegmatite exploration area was determined,based on a comprehensive analysis of the faults,hydroxyl alteration lithology and Li-bearing pegmatite information.Field investigations have verified that the distribution of pegmatites in the central part of the study area is consistent with that of Li-bearing pegmatites extracted in this study.This study provides a new technique for prospecting Li-bearing pegmatites,which shows that remote-sensing technology possesses great potential for identifying lithium-bearing pegmatites,especially in areas that are not readily accessible. 展开更多
关键词 remote sensing prospecting multi-class machine learning Li-bearing pegmatites western Altun
下载PDF
The long-lived partial melting of the Greater Himalayas in southern Tibet, constraints from the Miocene Gyirong anatectic pegmatite and its prospecting potential for rare element minerals 被引量:3
13
作者 Hua-wen Cao Qiu-ming Pei +6 位作者 Xiao Yu Ai-bin Cao Yong Chen Hang Liu Kai Zhang Xin Liu Xiang-fei Zhang 《China Geology》 CAS CSCD 2023年第2期303-321,I0004-I0015,共31页
The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater ... The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater Himalayan Crystalline Complex(GHC),the Gyirong pegmatite in southern Tibet was chosen for geochronological and geochemical studies.The dating analyses indicate that the U-Th-Pb ages of zircon,monazite,and xenotime exhibit large variations(38.6‒16.1 Ma),with the weighted average value of the four youngest points is 16.5±0.3 Ma,which indicates that the final stage of crystallization of the melt occurred in the Miocene.The age of the muscovite Ar-Ar inverse isochron is 15.2±0.4 Ma,which is slightly later than the intrusion age,showing that a cooling process associated with rapid denudation occurred at 16‒15 Ma.TheεHf(t)values of the Cenozoic anatectic zircons cluster between−12 and−9 with an average of−11.4.The Gyirong pegmatite shows high contents of Si,Al,and K,a high Al saturation index,and low contents of Na,Ca,Fe,Mn,P,Mg,and Ti.Overall,the Gyirong pegmatite is enriched in Rb,Cs,U,K,Th and Pb and depleted in Nb,Ta,Zr,Ti,Eu,Sr,and Ba.The samples show a high 87Sr/86Sr(16 Ma)ratio of ca.0.762 and a lowεNd(16 Ma)value of−16.0.The calculated average initial values of 208Pb/204Pb(16 Ma),207Pb/204Pb(16 Ma)and 206Pb/204Pb(16 Ma)of the whole rock are 39.72,15.79 and 19.56,respectively.The Sr-Nd-Pb-Hf isotopic characteristics of the Gyirong pegmatite are consistent with those of the GHC.This study concludes that the Gyirong pegmatite represents a typical crustal‒derived anatectic pegmatite with low metallogenic potential for rare metals.The Gyirong pegmatite records the long‒term metamorphism and partial melting process of the GHC,and reflects the crustal thickening caused by thrust compression at 39‒29 Ma and the crustal thinning induced by extensional decompression during 28‒15 Ma. 展开更多
关键词 Partial melting of magma Anatectic pegmatite Zircon-monazite-xenotime U‒Pb dating Sr-Nd-Pb isotopes Greater Himalayan crystalline complex Mineral exploration engineering Gyirong Tibet
下载PDF
The enhanced element enrichment in the supercritical states of granite–pegmatite systems 被引量:9
14
作者 Rainer Thomas Paul Davidson Karen Appel 《Acta Geochimica》 EI CAS CSCD 2019年第3期335-349,共15页
In this paper, we show that supercritical fluids have a greater significance in the generation of pegmatites,and for ore-forming processes related to granites than is usually assumed. We show that the supercritical me... In this paper, we show that supercritical fluids have a greater significance in the generation of pegmatites,and for ore-forming processes related to granites than is usually assumed. We show that the supercritical melt or fluid is a silicate phase in which volatiles; principally H_2O are completely miscible in all proportions at magmatic temperatures and pressures. This phase evolves from felsic melts and changes into hydrothermal fluids, and its unique properties are particularly important in sequestering and concentrating low abundance elements, such as metals. In our past research, we have focused on processes observed at upper crustal levels, however extensive work by us and other researchers have demonstrated that supercritical melt/fluids should be abundant in melting zones at deep-crustal levels too. We propose that these fluids may provide a connecting link between lower and upper crustal magmas,and a highly efficient transport mechanism for usually melt incompatible elements. In this paper, we explore the unique features of this fluid which allow the partitioning of variouselements and compounds, potentially up to extreme levels,and may explain various features both of mineralization and the magmas that produced them. 展开更多
关键词 GRANITES pegmatites SUPERCRITICAL state Extreme ELEMENT ENRICHMENT
下载PDF
The Metallogenetic Regularities of Lithium Deposits in China 被引量:21
15
作者 LI Jiankang ZOU Tianren +2 位作者 LIU Xifang WANG Denghong DING Xin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期652-670,共19页
Lithium resources support the development of high-technology industries. China has abundant lithium resources which are mainly distributed in Tibet, Qinghai, Sichuan and Jiangxi. Salt lakes in China have significant l... Lithium resources support the development of high-technology industries. China has abundant lithium resources which are mainly distributed in Tibet, Qinghai, Sichuan and Jiangxi. Salt lakes in China have significant lithium reserves, but lithium is mainly produced from hard rock lithium deposits because the extraction from salt lakes requires further improvements. The hard rock lithium deposits mainly occur in granitic pegmatite in the Altay region of Xinjiang and the Jiajika deposit in western Sichuan Province; they mainly formed in the Mesozoic and occurred in a relatively stable stage during orogenic processes. On the basis of the information from 151 lithium deposits or spots, 14 lithium metallogenic series were identified, and granitic pegmatite, granite, and sedimentary types were considered to be the main prediction types of lithium resources. Twelve lithium mineralization belts were divided and a series of maps showing the lithium metallogenetic regularity in China were drawn. We conclude that the hard rock and brine type of lithium resources possibly have a similar lithium source related to magmatism. The mctallogenic features of the lithium in China were related with the distinct history of tectonic-magmatic activity in China. This study benefits the assessment of, and prospecting for, lithium resources in China. 展开更多
关键词 lithium deposit prediction type of lithium resources metallogenetic regularity metallogenic series PEGMATITE
下载PDF
The Ore-forming Mechanism of the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan Province:Evidence from Isotope Dating 被引量:23
16
作者 LI Jiankang WANG Denghong CHEN Yuchuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期91-101,共11页
Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we... Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt. 展开更多
关键词 isotope dating liquid immiscibility in granitic magmas PEGMATITE Jiajika rare metal deposit
下载PDF
Fluid Characteristics and Evolution of the Zhawulong Granitic Pegmatite Lithium Deposit in the Ganzi-Songpan Region, Southwestern China 被引量:11
17
作者 XIONG Xin LI Jiankang +2 位作者 WANG Denghong LI Shanping LIN Hao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第4期943-954,共12页
The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt.Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid wit... The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt.Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite.There are three distinguishable types of fluid inclusions:crystal-rich,CO2–NaCl–H2 O,and NaCl–H2 O.At more than 500°C and 350~480 MPa,crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage,characterized by a dense hydrous alkali borosilicate fluid with a carbonate component.Between 412°C and 278°C,CO2–Na Cl–H2 Ofluid inclusions developed in spodumene(I)and quartz(II)with a low salinity(3.3–11.9 wt%NaCl equivalent)and a high volatile content,which represent the boundary between the transition stage and the hydrothermal stage.The subsequentNaCl–H2 Ofluid inclusions from the hydrothermal stage,between 189°C and 302°C,have a low salinity(1.1–13.9 wt%NaCl equivalent).The various types of fluid inclusions reveal the P–T conditions of pegmatite formation,which marks the transition process from magmatic to hydrothermal.The oreforming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit.The ore-forming fluid provided not only materials for crystallization of rare metal minerals,such as spodumene and beryl,but also the ideal conditions forthe growth of ore minerals.Therefore,this area has favorable conditions for lithium enrichment and excellent prospecting potential. 展开更多
关键词 granitic pegmatite fluid inclusions rare metals lithium deposit Zhawulong
下载PDF
Fully-coupled simulations of thermally-induced cracking in pegmatite due to microwave irradiation 被引量:8
18
作者 Jielin Li Rennie B.Kaunda +2 位作者 Shrey Arora Philipp Hartlieb Priscilla P.Nelson 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期242-250,共9页
Fully-coupled thermo-mechanical simulations are implemented in COMSOL Multiphysics to investigate micro-scale stress-strain variability in pegmatite specimens subjected to thermal loading using microwaves. Thermally-i... Fully-coupled thermo-mechanical simulations are implemented in COMSOL Multiphysics to investigate micro-scale stress-strain variability in pegmatite specimens subjected to thermal loading using microwaves. Thermally-induced compressive and tensile stresses increase as the microwave irradiation duration increases. The dielectric constant, coefficient of expansion, and type and size of mineralogical boundary have significant impacts on the responses of the rock to microwave irradiation. The maximum principal stress of the chlorite is the smallest, indicating that the chlorite experiences the most damage under microwave irradiation, followed by the quartz. The maximum principal stress values of plagioclase and orthoclase are larger, indicating that they are likely to incur the least damage. Where quartz or chlorite is dominant, the resulting von Mises stresses are consistently higher after 120 s of microwave irradiation. The rate of generation of von Mises stresses increases most rapidly along the interface between quartz and plagioclase, and the interface between quartz and orthoclase, followed by the interface between quartz and chlorite, and finally the interface between plagioclase and orthoclase. The presented modeling approach provides a practical method to investigate stress-strain relationships within mineralogical boundaries inside a rock thin section. 展开更多
关键词 MICROWAVE IRRADIATION THERMO-MECHANICAL loading PEGMATITE Numerical modeling
下载PDF
Application of Hydrothermal Diamond Anvil Cell to Homogenization Experiments of Silicate Melt Inclusions 被引量:11
19
作者 LI Jiankang LI Shenghu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第3期854-864,共11页
The homogenization of silicate melt inclusions (SMIs),small droplets of silicate melt trapped in magmatic minerals,is an important component of petrogenetic and magmatic research.Conventional homogenization experime... The homogenization of silicate melt inclusions (SMIs),small droplets of silicate melt trapped in magmatic minerals,is an important component of petrogenetic and magmatic research.Conventional homogenization experiments on SMIs use microscope-mounted heating stages capable of producing high temperatures at 1 atm and cold-seal high-pressure vessels.Heating stages are generally used for SMIs with low internal pressures and allow in situ observations of the homogenization processes.In contrast,cold-seal high-pressure vessels are generally used to heat SMIs that have high internal pressures,although the homogenized SMIs can only be observed after quenching in this approach.Here we outline an alternative approach that uses a hydrothermal diamond anvil cell (HDAC) apparatus to homogenize SMIs.This is the only current method wherein phase changes in high-internal-pressure SMIs can be observed in situ during homogenization experiments,which represents an advantage over other conventional methods.Using an HDAC apparatus prevents high-internal-pressure SMIs from decrepitating during heating by elevating their external pressure,in addition to allowing in situ observations of SMIs.The type-V HDAC that is currently being used has a shorter distance between the sample chamber and the observation window than earlier types,potentially enabling continuous observation of the processes involved in heating and SMI homogenization through an objective lens with a long working distance.Homogenization experiments using HDAC require that a number of steps,including HDAC preparation,sample preparation,sample loading,preheating,and formal heating,be carefully followed.Homogenization experiments on SMIs within granite samples from the Jiajika pegmatite deposit (Sichuan,China) are best performed using an HDAC-based approach,because the elevated proper external pressure of these SMIs,combined with a short heating duration,helps to suppress material leakage and any reactions within the SMIs,in addition to allowing in situ observations during homogenization experiments.Furthermore,using the HDAC approach has other benefits:heating rates can be precisely controlled,wafer oxidization can be prevented,and samples can be subjected to in situ microbeam analysis.In summary,homogenization using HDAC provides more reliable results than those obtained using conventional heating equipment.Future developments will include improvements to the quenching method and temperature controls for the HDAC apparatus,thereby improving the utility of this approach for SMI homogenization experiments. 展开更多
关键词 silicate melt inclusions homogenization experiments hydrothermal diamond anvil cell cold-seal pressure vessel Jiajika pegmatite deposit
下载PDF
Timing of granite pegmatite-type high-purity quartz deposit in the Eastern Qinling,China:constraints from in-situ LA-ICP-MS trace analyses of quartz and monazite U–Pb dating 被引量:5
20
作者 Yong Zhang Haibo Zhao +4 位作者 Lei Liu Jiayong Pan Likuan Zhu Guoqi Liu Xiaotian Zhang 《Acta Geochimica》 EI CAS CSCD 2022年第2期197-207,共11页
Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,an... Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,and the major minerals are quartz(39.8%),K-feldspar(18.8%),albite(36.3%),muscovite(3.4%),and garnet(1.1%).Monazite U–Pb isotopic dating indicates that the No.5 pegmatite from the Eastern Qinling was emplaced at ca.420.2±2.2 Ma,which confirms that highpurity quartz mineralization probably formed during the Early Devonian.In-situ laser ablation inductively coupled plasma mass spectrometry analysis of quartz show that quartz samples from Eastern Qinling have total trace element concentrations(Al,Ti,Sc,Li,B,Cr,Mn,and Fe)ranging from 23.2 to 52.8 ppm,slightly higher than the quartz(impurity element content from 13.4 to 25.9 ppm)of the Spruce Pine high-purity quartz deposit in western North Carolina.The No.5 pegmatite of Eastern Qinling could be defined as one high-purity quartz deposit of China. 展开更多
关键词 MONAZITE LA-ICP-MS U-Pb High-purity quartz Granite pegmatite Eastern Qinling
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部