Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows tha...Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows that the consumption of energy and products are increasing along with the deepening of UCMCOWS processing, UCMCOWS making and combustion are the two periods which have a bigger impact on eco-system and human health. As a new substitute of fuel, UCMCOWS merits to be utilized more efficiently and reasonably.展开更多
Natural gas and coal are the main primary energy resources used in the Romanian energy sector, 73.7% in 2011, taking into account the fuel imports. The objective of the article consists in analyzing all the processes ...Natural gas and coal are the main primary energy resources used in the Romanian energy sector, 73.7% in 2011, taking into account the fuel imports. The objective of the article consists in analyzing all the processes along the coal and the natural gas life cycle in order to assess their overall environmental impact. Two energy technologies were analyzed, for each resource: the pulverized coal combustion with supra-critical parameters and CO2 capture unit and the natural gas combined cycle. Considering the functional unit of electricity production for 1 year, it was found that the natural gas combined cycle remains the more interesting energy technology from an environmental point of view. However, the pulverized coal with supra-critical parameters equipped with a CO2 capture unit has the lowest environmental impact on the climate change. The weakest point of the coal technology is its low efficiency.展开更多
China is the largest producer and consumer of HFC-134a(1,1,1,2-tetrafluoroethane)in the world.Coal-based route is mainly adopted to produce HFC-134a,which suffers from large waste and CO_(2) emissions.Natural gas is a...China is the largest producer and consumer of HFC-134a(1,1,1,2-tetrafluoroethane)in the world.Coal-based route is mainly adopted to produce HFC-134a,which suffers from large waste and CO_(2) emissions.Natural gas is a low-carbon and clean energy resource,and no research has been found on the environment and economy of producing HFC-134a from natural gas.In this study,CML 2001 method was used to carry out the life cycle assessment of natural gas(partial oxidation)-based and natural gas(plasma cracking)-based routes(abbreviated as gas(O)-based and gas(P)-based routes,respectively),and their environmental performances were compared with coal-based and oil-based routes.Meanwhile,considering that China is vigorously promoting the transformation of energy structure,and the application of electric heating equipment to replace fossil-based heating equipment in industrial field,which has a great impact on the environmental performance of the production processes,the authors conducted a scenario analysis.The results showed that the gas(O)-based route had the most favourable environmental benefits.However,the gas(P)-based route had the highest potential for reducing environmental burdens,and its environmental benefit was the most favourable in scenario 2050.Additionally,the economic performance of the gas(P)-based route was significantly better than that of gas(O)-based and coal-based routes.展开更多
Biomass is a renewable, economic and readily available resource of energy that has potential to substitute fossil fuels in many applications such as heat, electricity and biofuels. The increased use of the agricultura...Biomass is a renewable, economic and readily available resource of energy that has potential to substitute fossil fuels in many applications such as heat, electricity and biofuels. The increased use of the agricultural biomass can help the agricultural based societies in achieving energy security and creating employment without causing environmental degradation. However, the viability and feasibility of electricity generation from agricultural biomass depends upon the availability of biomass supply at a competitive cost. The present study investigates the availability of agricultural biomass for distributed power generation in Greece (Kozani). The study concludes with a discussion on significance and challenges of decentralized electricity generation for rural energy supply, including brief description about economical, social, environmental and technical aspects of bioelectricity. With the application of the life cycle analysis applied, the environmental and economic impacts that will occur in the region of Kozani in Greece, where a biomass wood pellets production workshop is operating, have been assessed. The total annual emission of CO 657.9 gr, HC 22.36 gr, PM 67.94 and NOx 8.832,2 gr was calculated. The economic evaluation estimated the payback period for the investment in this plant to be approximately 3 years.展开更多
零排放是一种高效的废水回用技术,是解决水资源短缺和煤化工废水排放污染的关键。零排放的应用虽然可以增加回用水,减少水污染,但其成本和能耗都很高。煤制烯烃废水处理包括生化处理、膜处理和蒸发结晶工艺。对不同机组的环境影响进行...零排放是一种高效的废水回用技术,是解决水资源短缺和煤化工废水排放污染的关键。零排放的应用虽然可以增加回用水,减少水污染,但其成本和能耗都很高。煤制烯烃废水处理包括生化处理、膜处理和蒸发结晶工艺。对不同机组的环境影响进行了分析。使用五种环境影响和两种人类健康影响来评估零排放系统的环境性能。例如,零排放系统的全球变暖潜力为1401.316 kg CO_(2-eq)。此外,进一步的经济分析包括水的平均成本和生命周期成本。水的平均成本为2.65$/t,生命周期成本的外部成本为7.68%。研究的重点在于设计煤制烯烃废水的整个零排放工艺,这将显著提高零排放系统的经济和环境性能。展开更多
文摘Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows that the consumption of energy and products are increasing along with the deepening of UCMCOWS processing, UCMCOWS making and combustion are the two periods which have a bigger impact on eco-system and human health. As a new substitute of fuel, UCMCOWS merits to be utilized more efficiently and reasonably.
基金funded by the UEFISCDI within the National Project number 38/2012 with the title:“Technical-economic and environmental optimization of CCS technologies integration in power plants based on solid fossil fuel and renewable energy sources(biomass)”-CARBOTECH.
文摘Natural gas and coal are the main primary energy resources used in the Romanian energy sector, 73.7% in 2011, taking into account the fuel imports. The objective of the article consists in analyzing all the processes along the coal and the natural gas life cycle in order to assess their overall environmental impact. Two energy technologies were analyzed, for each resource: the pulverized coal combustion with supra-critical parameters and CO2 capture unit and the natural gas combined cycle. Considering the functional unit of electricity production for 1 year, it was found that the natural gas combined cycle remains the more interesting energy technology from an environmental point of view. However, the pulverized coal with supra-critical parameters equipped with a CO2 capture unit has the lowest environmental impact on the climate change. The weakest point of the coal technology is its low efficiency.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.22078266 and 22008198)the Youth Innovation Team construction scientific research Project of Education Ministry of Shaanxi province,China(Grant No.22JP090)+1 种基金the Youth Talent Promotion Program of Shaanxi Association for Science and Technology(Grant No.20220602)Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2021JQ-555).
文摘China is the largest producer and consumer of HFC-134a(1,1,1,2-tetrafluoroethane)in the world.Coal-based route is mainly adopted to produce HFC-134a,which suffers from large waste and CO_(2) emissions.Natural gas is a low-carbon and clean energy resource,and no research has been found on the environment and economy of producing HFC-134a from natural gas.In this study,CML 2001 method was used to carry out the life cycle assessment of natural gas(partial oxidation)-based and natural gas(plasma cracking)-based routes(abbreviated as gas(O)-based and gas(P)-based routes,respectively),and their environmental performances were compared with coal-based and oil-based routes.Meanwhile,considering that China is vigorously promoting the transformation of energy structure,and the application of electric heating equipment to replace fossil-based heating equipment in industrial field,which has a great impact on the environmental performance of the production processes,the authors conducted a scenario analysis.The results showed that the gas(O)-based route had the most favourable environmental benefits.However,the gas(P)-based route had the highest potential for reducing environmental burdens,and its environmental benefit was the most favourable in scenario 2050.Additionally,the economic performance of the gas(P)-based route was significantly better than that of gas(O)-based and coal-based routes.
文摘Biomass is a renewable, economic and readily available resource of energy that has potential to substitute fossil fuels in many applications such as heat, electricity and biofuels. The increased use of the agricultural biomass can help the agricultural based societies in achieving energy security and creating employment without causing environmental degradation. However, the viability and feasibility of electricity generation from agricultural biomass depends upon the availability of biomass supply at a competitive cost. The present study investigates the availability of agricultural biomass for distributed power generation in Greece (Kozani). The study concludes with a discussion on significance and challenges of decentralized electricity generation for rural energy supply, including brief description about economical, social, environmental and technical aspects of bioelectricity. With the application of the life cycle analysis applied, the environmental and economic impacts that will occur in the region of Kozani in Greece, where a biomass wood pellets production workshop is operating, have been assessed. The total annual emission of CO 657.9 gr, HC 22.36 gr, PM 67.94 and NOx 8.832,2 gr was calculated. The economic evaluation estimated the payback period for the investment in this plant to be approximately 3 years.
文摘零排放是一种高效的废水回用技术,是解决水资源短缺和煤化工废水排放污染的关键。零排放的应用虽然可以增加回用水,减少水污染,但其成本和能耗都很高。煤制烯烃废水处理包括生化处理、膜处理和蒸发结晶工艺。对不同机组的环境影响进行了分析。使用五种环境影响和两种人类健康影响来评估零排放系统的环境性能。例如,零排放系统的全球变暖潜力为1401.316 kg CO_(2-eq)。此外,进一步的经济分析包括水的平均成本和生命周期成本。水的平均成本为2.65$/t,生命周期成本的外部成本为7.68%。研究的重点在于设计煤制烯烃废水的整个零排放工艺,这将显著提高零排放系统的经济和环境性能。