期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Amplification of an MFS Transporter Encoding Gene penT Significantly Stimulates Penicillin Production and Enhances the Sensitivity of Penicillium chrysogenum to Phenylacetic Acid 被引量:3
1
作者 Jing Yang Xinxin Xu Gang Liu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2012年第11期593-602,共10页
Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosyn- thetic pathway and regulatory mechanism have been well studied in Penicillium ch... Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosyn- thetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein ofpenTbelongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenurn doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane. Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosyn- thetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein ofpenTbelongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenurn doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane. 展开更多
关键词 penicillium chrysogenum PEN Penicillin production phenylacetic acid MFS transporter
原文传递
产黄青霉谷胱甘肽S-转移酶基因PcgstA的克隆与鉴定(英文) 被引量:1
2
作者 王富强 郑桂珍 +4 位作者 赵颖 任志红 贾茜 贺建功 于军 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2006年第12期1223-1229,1230,共8页
从青霉素工业生产菌产黄青霉(Penicilliumchrysogenum)中首次克隆了一个谷胱甘肽S-转移酶(GST)基因,定名为PcgstA.该基因的开放阅读框长840bp,含有两个内含子,编码一个238氨基酸残基的蛋白质.其推断的氨基酸序列与一些已经鉴定的丝状真... 从青霉素工业生产菌产黄青霉(Penicilliumchrysogenum)中首次克隆了一个谷胱甘肽S-转移酶(GST)基因,定名为PcgstA.该基因的开放阅读框长840bp,含有两个内含子,编码一个238氨基酸残基的蛋白质.其推断的氨基酸序列与一些已经鉴定的丝状真菌GST具有50%左右的序列一致性.PcgstA的完整编码区经RT-PCR扩增、验证,插入原核表达载体pET11a,转化大肠杆菌BL21(DE3)-RP菌株,表达得到重组PcGSTA蛋白.酶活测定证实,重组PcGSTA具有GST活性,其对底物CDNB(1-chloro-2,4-dinitrobenzene)的比活为(0.159±0.031)μmol/(min·mg).利用TaqMan探针法,对PcgstA的表达情况进行了比较.结果表明,在添加了侧链前体苯乙酸的青霉素生产培养基中,PcgstA的表达水平和在不含苯乙酸培养基中的表达相比明显下调,显示了该基因与苯乙酸代谢的关系. 展开更多
关键词 产黄青霉 谷胱甘肽S-转移酶 苯乙酸
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部