期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The tangential k-Cauchy-Fueter type operator and Penrose type integral formula on the generalized complex Heisenberg group
1
作者 REN Guang-zhen SHI Yun KANG Qian-qian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期181-190,共10页
The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.I... The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex. 展开更多
关键词 the generalized complex Heisenberg group the tangential k-Cauchy-Fueter type operator penrose-type integral formula
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部