In this editorial,we comment on Yin et al’s recently published Letter to the editor.In particular,we focus on the potential use of glucagon-like peptide 1 receptor agonists(GLP-1RAs)alone,but even more so in combinat...In this editorial,we comment on Yin et al’s recently published Letter to the editor.In particular,we focus on the potential use of glucagon-like peptide 1 receptor agonists(GLP-1RAs)alone,but even more so in combination therapy,as one of the most promising therapies in metabolic dysfunction-associated steatotic liver disease(MASLD),the new definition of an old condition,non-alcoholic fatty liver disease,which aims to better define the spectrum of steatotic pathology.It is well known that GLP-1RAs,having shown outstanding performance in fat loss,weight loss,and improvement of insulin resistance,could play a role in protecting the liver from progressive damage.Several clinical trials have shown that,among GLP-1RAs,semaglutide is a safe,well-studied therapeutic choice for MASLD patients;however,most studies demonstrate that,while semaglutide can reduce steatosis,including steatohepatitis histological signs(in terms of inflammatory cell infiltration and hepatocyte ballooning),it does not improve fibrosis.Combinations of therapies with different but complementary mechanisms of action are considered the best way to improve efficiency and slow disease progression due to the complex pathophysiology of the disease.In particular,GLP-1RAs associated with antifibrotic drug therapy,dual glucose-dependent insulinotropic polypeptide(GIP)/GLP-1RA or GLP-1 and glucagon RAs have promoted greater improvement in hepatic steatosis,liver biochemistry,and non-invasive fibrosis tests than monotherapy.Therefore,although to date there are no definitive indications from international drug agencies,there is the hope that soon the therapeutic lines in the most advanced phase of study will be able to provide a therapy for MASLD,one that will certainly include the use of GLP-1RAs as combination therapy.展开更多
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activati...The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues,including diffe rent brain regions.Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection,like the support of cell growth/survival,enhancement promotion of synapse formation,autophagy,and inhibition of the secretion of proinflammatory cytokines,microglial activation,and apoptosis during neural morphogenesis.The glial cells,including astrocytes and microglia,maintain metabolic homeostasis and defe nse against pathogens in the central nervous system.After brain insult,microglia are the first cells to respond,followed by reactive astrocytosis.These activated cells produce proinflammato ry mediators like cytokines or chemokines to react to the insult.Furthermore,under these circumstances,mic roglia can become chro nically inflammatory by losing their homeostatic molecular signature and,consequently,their functions during many diseases.Several processes promote the development of neurological disorders and influence their pathological evolution:like the formation of protein aggregates,the accumulation of abnormally modified cellular constituents,the formation and release by injured neurons or synapses of molecules that can dampen neural function,and,of critical impo rtance,the dysregulation of inflammato ry control mechanisms.The glucagonlike peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies,restoring brain cell homeostasis under inflammatory conditions,modulating mic roglia activity,and decreasing the inflammato ry response.This review summarizes recent advances linked to the anti-inflammato ry prope rties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis,Alzheimer’s disease,Parkinson’s disease,vascular dementia,or chronic migraine.展开更多
Glucagon-like peptide-1 receptor(GLP-1R)agonist,a subgroup of incretin-based anti-diabetic therapies,is an emerging medication with benefits in reducing blood glucose and weight and increasing cardiovascular protectio...Glucagon-like peptide-1 receptor(GLP-1R)agonist,a subgroup of incretin-based anti-diabetic therapies,is an emerging medication with benefits in reducing blood glucose and weight and increasing cardiovascular protection.Contrarily,concerns have been raised about GLP-1R agonists increasing the risk of particular cancers.Recently,several epidemiological studies reported contradictory findings of incretin-based therapy on the risk modification for cholangiocarcinoma(CCA).The first cohort study demonstrated that incretin-based therapy was associated with an increased risk of CCA.Later studies,however,showed a null effect of incretinbased therapy on CCA risk for dipeptidyl peptidase-4 inhibitor nor GLP-1R agonist.Mechanistically,glucagon-like peptide 1 receptor is multifunctional,including promoting cell growth.High GLP-1R expressions were associated with progressive phenotypes of CCA cells in vitro.Unexpectedly,the GLP-1R agonist showed anti-tumor effects on CCA cells in vitro and in vivo with unclear mechanisms.Our recent report also showed that GLP-1R agonists suppressed the expression of GLP-1R in CCA cells in vitro and in vivo,leading to the inhibition of CCA tumor growth.This editorial reviews recent evidence,discusses the potential effects of GLP-1R agonists in CCA patients,and proposes underlying mechanisms that would benefit from further basic and clinical investigation.展开更多
This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor ag...This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor agonists(GLP-1RAs)in the management of type 2 diabetes and this editorial provides complementary information.We initially give a brief historical perspective of the development of GLP-1RAs stimulated by recognition of the‘incretin effect’,the substantially greater insulin increase to enteral when compared to euglycaemic intravenous glucose,and the identification of the incretin hormones,GIP and GLP-1.In addition to stimulating insulin,GLP-1 reduces postprandial glucose levels by slowing gastric emptying.GLP-1RAs were developed because native GLP-1 has a very short plasma half-life.The majority of current GLP-1RAs are administered by subcutaneous injection once a week.They are potent in glucose lowering without leading to hypoglycaemia,stimulate weight loss in obese individuals and lead to cardiovascular and renal protection.The landscape in relation to GLP-1RAs is broadening rapidly,with different formulations and their combination with other peptides to facilitate both glucose lowering and weight loss.There is a need for more information relating to the effects of GLP-1RAs to induce gastrointestinal symptoms and slow gastric emptying which is likely to allow their use to become more effective and personalised.展开更多
Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that we...Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.展开更多
Glucagon-like peptide- 1 (GLP- 1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer's disease (AD) and T2DM share some common pathophysiol...Glucagon-like peptide- 1 (GLP- 1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer's disease (AD) and T2DM share some common pathophysiologic hallmarks, such as amyloid β (Aβ), phosphoralation of tau protein, and glycogen synthase kinase-3. GLP-1 possesses neurotropic properties and can reduce amyloid protein levels in the brain. Based on extensive studies during the past decades, the understanding on AD leads us to believe that the primary targets in AD are the Aβ and tau protein. Combine these findings, GLP- 1 is probably a promising agent in the therapy of AD. This review was focused on the biochemistry and physiology of GLP- 1, communities between T2DM and AD, new progresses of GLP - 1 in treating T2MD and improving some pathologic hanmarks of AD.展开更多
Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of c...Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of case reports show an association of GLP-1receptor agonists,mainly exenatide,with the development of acute kidney injury.The present review aims to present the available data regarding the effects of GLP-1 receptor agonists on renal function,their use in subjects with chronic renal failure and their possible association with acute kidney injury.Based on the current evidence,exenatide is eliminated by renal mechanisms and should not be given in patients with severe renal impairment or end stage renal disease.Liraglutide is not eliminated by renal or hepatic mechanisms,but it should be used with caution since there are only limited data in patients with renal or hepatic impairment.There is evidence from animal studies that GLP-1 receptor agonists exert protective role in diabetic nephropathy with mechanisms that seem to be independent of their glucose-lowering effect.Additionally,there is evidence that GLP-1 receptor agonists influence water and electrolyte balance.These effects may represent new ways to improve or even prevent diabetic nephropathy.展开更多
To investigate the effect of calcitonin gene related peptide (CGRP) on bone resorption mediated by interleukin 1β(IL 1β) in vitro , the osteoclasts isolated from the long bones of newborn SD rats were co cul...To investigate the effect of calcitonin gene related peptide (CGRP) on bone resorption mediated by interleukin 1β(IL 1β) in vitro , the osteoclasts isolated from the long bones of newborn SD rats were co cultured with osteoblasts on ivory slices placed in 24 well plates . 24 h later, conditioned media containing CGRP and/or IL 1β were added to the wells respectively, and continued culturing for 48 h. After the cells were stripped off by ultrasonication, the ivory slices were stained in toludine blue. The number and the total area of resorption lacunae on each slice were measured by computer imaging analysis system. Our results showed that IL 1β significantly stimulated bone resorption, but CGRP inhibited the effect mediated by IL 1β in a dose dependent manner. It is suggested that CGRP may inhibit osteoclastic bone resorption through two ways: One is that CGRP functions directly on osteoclasts to block their activation; the other is that CGRP regulates the release of cytokines by osteoblasts and indirectly affects the function of osteoclasts.展开更多
Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies as...Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose(3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed antiobesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and longterm weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need.展开更多
In order to investigate the immunological damage in rat immunized with AT1-receptor peptide, 18 male Wistar rats were divided into two groups: immunized-group (n=12), each rat was immunized with 150 μg AT 1-receptor...In order to investigate the immunological damage in rat immunized with AT1-receptor peptide, 18 male Wistar rats were divided into two groups: immunized-group (n=12), each rat was immunized with 150 μg AT 1-receptor petide coupled to bovine serum albumin, together with Freund's adjuvant. Control group (n=6), sham-immunized, 'immunized liquid' was same as immunized-group except AT1-receptor peptide. Systolic blood pressure (SBP) was measured by using the tail-cuff technique, antibody against AT1-receptor peptide detected by using ELISA method, and left ventricular myocardium and renal cortex sections were observed under light and electron microscopy. There was no significant difference in SBP and light microscopic observation of the tissue sections between the immunized-group and control group. The O.D. value of anti-AT1-receptor peptide antiserum was significantly higher in the immunized-group than in the rats before immunization and control group (P<0.01). Positive rate in the immunized-group was 100 %, while 0 % in the control group. Ultramicroscopic morphology showed potential myocardial injury, including: increase in number of mitochondria, swelling of many mitochondria with reduction in number or absence of their cristae and cristolysis, disorder of the cardiac myofibrils, and myofibrillar disruption and myocytolysis. And lysosomes were increased in renal tubular epithelia. The AT1-receptor peptide could induce to generate the antibody against AT1-receptor peptide and lead to myocardial and renal damage in rats.展开更多
BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP...BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.展开更多
Virion infectivity factor(Vif) is one of the six accessory proteins of HIV-1 and is necessary for viral infectivity. Human Apolipoprotein B editing complex protein 3G(h-APOBEC3G) is a cytidine deaminase only expre...Virion infectivity factor(Vif) is one of the six accessory proteins of HIV-1 and is necessary for viral infectivity. Human Apolipoprotein B editing complex protein 3G(h-APOBEC3G) is a cytidine deaminase only expressed in "nonpermissive" cells and exhibits virus suppressive activity. With the aid of a Cullin-5 E3 ligase, Vif induces h-APOBEC3G degradation and with the destruction of this ligase, Vif is functionally inactive. Therefore, it is expected that blocking this E3 pathway would be a new therapeutic strategy against HIV-1 infection. In this article, the authors' took sequence alignment of the N-termini of Cullin-5 and three other members of the Cullin protein family, respectively. A set of small peptides has been synthesized based on the sequence comparison results and possible Vif-Cullin-5 interaction domains. Moreover, it has been demonstrated that several peptides can reduce virus infectivity in "nonpermissive" cells with a dose-responsive manner, but not in "permissive" cells. The results also indicate that the loss of viral infectivity may be because of the increase of APOBEC3G amount in the peptide-treated cells. It is concluded that peptides derived from Cullin-5 can block the APOBEC3G degradation induced by Vif and suppress HIV-1 infectivity. Therefore this study starts a novel strategy for the development of a new HIV-1 inhibitor.展开更多
Previous studies have shown that sirtuin 1(SIRT1) reduces the production of neuronal amyloid beta(Aβ) and inhibits the inflammatory response of glial cells, thereby generating a neuroprotective effect against Aβ...Previous studies have shown that sirtuin 1(SIRT1) reduces the production of neuronal amyloid beta(Aβ) and inhibits the inflammatory response of glial cells, thereby generating a neuroprotective effect against Aβ neurotoxicity in animal models of Alzheimer's disease. However, the protective effect of SIRT1 on astrocytes is still under investigation. This study established a time point model for the clearance of Aβ in primary astrocytes. Results showed that 12 hours of culture was sufficient for endocytosis of oligomeric Aβ, and 36 hours sufficient for effective degradation. Immunofluorescence demonstrated that Aβ degradation in primary astrocytes relies on lysosome function. Enzymatic agonists or SIRT1 inhibitors were used to stimulate cells over a concentration gradient. Aβ was co-cultured for 36 hours in medium. Western blot assay results under different conditions revealed that SIRT1 relies on its deacetylase activity to promote intracellular Aβ degradation. The experiment further screened SIRT1 using quantitative proteomics to investigate downstream, differentially expressed proteins in the Aβ degradation pathway and selected the ones related to enzyme activity of SIRT1. Most of the differentially expressed proteins detected are close to the primary astrocyte lysosomal pathway. Immunofluorescence staining demonstrated that SIRT1 relies on its deacetylase activity to upregulate lysosome number in primary astrocytes. Taken together, these findings confirm that SIRT1 relies on its deacetylase activity to upregulate lysosome number, thereby facilitating oligomeric Aβ degradation in primary astrocytes.展开更多
The interaction between HIV-1 DNA and five cyclic peptides (CP1-CP5) was investigated using electrospray ionization mass spectrometry (ESI-MS). It revealed that CP1 [c(Ala-Tyr-Leu-Ala-Gly)] and CP4 [c(Pro-D-Tyr...The interaction between HIV-1 DNA and five cyclic peptides (CP1-CP5) was investigated using electrospray ionization mass spectrometry (ESI-MS). It revealed that CP1 [c(Ala-Tyr-Leu-Ala-Gly)] and CP4 [c(Pro-D-Tyr-Leu-D-Ala-Gly)] have the higher binding affinity with the duplex DNA among the five cyclic peptides.展开更多
AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incret...AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge.Following a lipid challenge,plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h.Incretin hormones [glucagon like peptide-1(GLP-1),peptide tyrosine-tyrosine(PYY) and glucose dependent insulinotropic polypeptide(GIP)] were then quantitated.The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice.Additionally,a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition.To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition,other interventions [inhibitors of dipeptidyl peptidase-IV(sitagliptin),pancreatic lipase(Orlistat),GPR119 knockout mice] were evaluated.RESULTS DGAT1 deficient mice and wildtype C57/BL6J mice werelipid challenged and levels of both active and total GLP-1 in the plasma were increased.This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice.Furthermore,PF-04620110 was able to dose responsively increase GLP-1 and PYY,but blunt GIP at all doses of PF-04620110 during lipid challenge.Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1.In contrast,in a combination study with Orlistat,the ability of PF-04620110 to elicit an enhanced incretin response was abrogated.To further explore this observation,GPR119 knockout mice were evaluated.In response to a lipid challenge,GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY.However,PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice.CONCLUSION Collectively,these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.展开更多
TMTP1, a 5-amino acid peptide NVVRQ, obtained by using the flagella peptide library screening in our previous studies, can be used for the labeling of malignant in situ and metastatic lesions, and even micro-metastase...TMTP1, a 5-amino acid peptide NVVRQ, obtained by using the flagella peptide library screening in our previous studies, can be used for the labeling of malignant in situ and metastatic lesions, and even micro-metastases. In this study, TMTP1 was assessed for its ability to specifically target the malignant hematopoietic cells and metastatic lesions of hematological malignancies. FITC-TMTP1 was chemically synthesized. Immunofluorescence assay and competitive test were carried out to determine the specific binding capacity of TMTPl to hematological malignant cell lines, including HL60, k562, SHI-1, Jurkat, Raji, El-4 and umbilical cord blood mononuclear cells. Mononuclear cells were isolated from the bone marrow of healthy subjects and patients with chronic myeloid leukemia. Then the cells were co-clutured with TMTP1 or scrambled peptides and the binding and affinity of TMTP1 peptide to the primary cells of hematological malignancies were flow cytometrically analyzed. The binding speci-ficity of TMTP1 to target hematological malignancies was measured in vivo by intravenous injection of FITC-conjugated TMTP1 into El-4 lymphoma-bearing mice. The results showed that TMTP1 specifi-cally bound to the cells of a series of hematological malignancies, including HL60, k562, Jurkat, Raji , El-4 and chronic myeloid leukemia primary cells but not to bone marrow mononuclear cells from healthy subjects. By contrast, TMTP1 could bind to the metastatic foci of lymphoma originating from the EL-4 cell line while the scrambled peptide failed to do so. Moreover, the occult metastases could be identified, with high specificity, by detecting FITC-TMTP1. We are led to conclude that TMTP1, as a novel tumor-homing peptide, can serve as a marker for primary malignant and metastatic lesions for the early diagnosis of hematological malignances and a carrier of anticancer drugs for cancer treatment.展开更多
Neutrophil peptide 1 belongs to a family of peptides involved in innate immunity. Continuous intramuscular injection of neutrophil peptide 1 can promote the regeneration of peripheral nerves, but clinical application ...Neutrophil peptide 1 belongs to a family of peptides involved in innate immunity. Continuous intramuscular injection of neutrophil peptide 1 can promote the regeneration of peripheral nerves, but clinical application in this manner is not convenient. To this end, the effects of a single intraoperative administration of neutrophil peptide 1 on peripheral nerve regeneration were experimentally observed. A rat model of sciatic nerve crush injury was established using the clamp method. After model establishment, a normal saline group and a neutrophil peptide 1 group were injected with a single dose of normal saline or 10 μg/mL neutrophil peptide 1, respectively. A sham group, without sciatic nerve crush was also prepared as a control. Sciatic nerve function tests, neuroelectrophysiological tests, and hematoxylin-eosin staining showed that the nerve conduction velocity, sciatic functional index, and tibialis anterior muscle fiber cross-sectional area were better in the neutrophil peptide 1 group than in the normal saline group at 4 weeks after surgery. At 4 and 8 weeks after surgery, there were no differences in the wet weight of the tibialis anterior muscle between the neutrophil peptide 1 and saline groups. Histological staining of the sciatic nerve showed no significant differences in the number of myelinated nerve fibers or the axon cross-sectional area between the neutrophil peptide 1 and normal saline groups. The above data confirmed that a single dose of neutrophil peptide 1 during surgery can promote the recovery of neurological function 4 weeks after sciatic nerve injury. All the experiments were approved by the Medical Ethics Committee of Peking University People's Hospital, China(approval No. 2015-50) on December 9, 2015.展开更多
Background: It is wel known that peptides play a vital role in the nutrition and health of dairy cows. Bovine oligopeptide transporter 1(bP epT 1) is involved in the peptide transport process in the gastrointestinal t...Background: It is wel known that peptides play a vital role in the nutrition and health of dairy cows. Bovine oligopeptide transporter 1(bP epT 1) is involved in the peptide transport process in the gastrointestinal tracts of dairy cows. However,little information is known in the characteristics of bP epT 1. Therefore, the purpose of this study was to characterize bP epT 1 functional y using a mammalian cel expression system. The uptake of radiolabeled dipeptide glycyl-sarcosine([3 H]-Gly-Sar)into the bP epT 1-transfected Chinese hamster ovary cel s was measured at various pH and substrate concentrations and with or without 15 other smal peptides that contained Met or Lys.Results: Western blot results showed that the abundance of bP epT 1 protein in the jejunum and ileum are the highest in the gastrointestinal tract of dairy cows. The uptake of [3 H]-Gly-Sar by b Pep T1-Chinese hamster ovary cells was dependent on time, p H, and substrate concentration, with a low Kmvalue of 0.94 ± 0.06 mmol/L and a maximum velocity of 20.80 ± 1.74 nmol/(mg protein · 5 min). Most of the di-and tripeptides were the substrates of b Pep T1,based on substrate-competitive studies. However, bP epT 1 has a higher affinity to the peptides with shorter chains, greater hydrophobicity, and negative or neutral charges.Conclusions: These results demonstrated for the first time the functional characteristics of bP epT 1, and they provide a new insight and better understanding into its vital role in absorbing a wide range of peptides from the digestive tract of dairy cows.展开更多
文摘In this editorial,we comment on Yin et al’s recently published Letter to the editor.In particular,we focus on the potential use of glucagon-like peptide 1 receptor agonists(GLP-1RAs)alone,but even more so in combination therapy,as one of the most promising therapies in metabolic dysfunction-associated steatotic liver disease(MASLD),the new definition of an old condition,non-alcoholic fatty liver disease,which aims to better define the spectrum of steatotic pathology.It is well known that GLP-1RAs,having shown outstanding performance in fat loss,weight loss,and improvement of insulin resistance,could play a role in protecting the liver from progressive damage.Several clinical trials have shown that,among GLP-1RAs,semaglutide is a safe,well-studied therapeutic choice for MASLD patients;however,most studies demonstrate that,while semaglutide can reduce steatosis,including steatohepatitis histological signs(in terms of inflammatory cell infiltration and hepatocyte ballooning),it does not improve fibrosis.Combinations of therapies with different but complementary mechanisms of action are considered the best way to improve efficiency and slow disease progression due to the complex pathophysiology of the disease.In particular,GLP-1RAs associated with antifibrotic drug therapy,dual glucose-dependent insulinotropic polypeptide(GIP)/GLP-1RA or GLP-1 and glucagon RAs have promoted greater improvement in hepatic steatosis,liver biochemistry,and non-invasive fibrosis tests than monotherapy.Therefore,although to date there are no definitive indications from international drug agencies,there is the hope that soon the therapeutic lines in the most advanced phase of study will be able to provide a therapy for MASLD,one that will certainly include the use of GLP-1RAs as combination therapy.
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
基金supported by the European Union Grant Alehoop(H2020-BBIJTI-2019-887259)And from the Xunta de Galicia(Centro singular de Investigación de Galicia accreditation 2016-2019),ED431 G/02(to FM)。
文摘The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues,including diffe rent brain regions.Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection,like the support of cell growth/survival,enhancement promotion of synapse formation,autophagy,and inhibition of the secretion of proinflammatory cytokines,microglial activation,and apoptosis during neural morphogenesis.The glial cells,including astrocytes and microglia,maintain metabolic homeostasis and defe nse against pathogens in the central nervous system.After brain insult,microglia are the first cells to respond,followed by reactive astrocytosis.These activated cells produce proinflammato ry mediators like cytokines or chemokines to react to the insult.Furthermore,under these circumstances,mic roglia can become chro nically inflammatory by losing their homeostatic molecular signature and,consequently,their functions during many diseases.Several processes promote the development of neurological disorders and influence their pathological evolution:like the formation of protein aggregates,the accumulation of abnormally modified cellular constituents,the formation and release by injured neurons or synapses of molecules that can dampen neural function,and,of critical impo rtance,the dysregulation of inflammato ry control mechanisms.The glucagonlike peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies,restoring brain cell homeostasis under inflammatory conditions,modulating mic roglia activity,and decreasing the inflammato ry response.This review summarizes recent advances linked to the anti-inflammato ry prope rties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis,Alzheimer’s disease,Parkinson’s disease,vascular dementia,or chronic migraine.
基金Supported by Mekong-Lancang Cooperation Special FundCho-Kalaphruek Excellent Research Project for Medical StudentsThe International Internship Pilot Program,No.IIPP2023283.
文摘Glucagon-like peptide-1 receptor(GLP-1R)agonist,a subgroup of incretin-based anti-diabetic therapies,is an emerging medication with benefits in reducing blood glucose and weight and increasing cardiovascular protection.Contrarily,concerns have been raised about GLP-1R agonists increasing the risk of particular cancers.Recently,several epidemiological studies reported contradictory findings of incretin-based therapy on the risk modification for cholangiocarcinoma(CCA).The first cohort study demonstrated that incretin-based therapy was associated with an increased risk of CCA.Later studies,however,showed a null effect of incretinbased therapy on CCA risk for dipeptidyl peptidase-4 inhibitor nor GLP-1R agonist.Mechanistically,glucagon-like peptide 1 receptor is multifunctional,including promoting cell growth.High GLP-1R expressions were associated with progressive phenotypes of CCA cells in vitro.Unexpectedly,the GLP-1R agonist showed anti-tumor effects on CCA cells in vitro and in vivo with unclear mechanisms.Our recent report also showed that GLP-1R agonists suppressed the expression of GLP-1R in CCA cells in vitro and in vivo,leading to the inhibition of CCA tumor growth.This editorial reviews recent evidence,discusses the potential effects of GLP-1R agonists in CCA patients,and proposes underlying mechanisms that would benefit from further basic and clinical investigation.
文摘This editorial is stimulated by the article by Alqifari et al published in the World Journal of Diabetes(2024).Alqifari et al focus on practical advice for the clinical use of glucagon-like-peptide-1(GLP-1)receptor agonists(GLP-1RAs)in the management of type 2 diabetes and this editorial provides complementary information.We initially give a brief historical perspective of the development of GLP-1RAs stimulated by recognition of the‘incretin effect’,the substantially greater insulin increase to enteral when compared to euglycaemic intravenous glucose,and the identification of the incretin hormones,GIP and GLP-1.In addition to stimulating insulin,GLP-1 reduces postprandial glucose levels by slowing gastric emptying.GLP-1RAs were developed because native GLP-1 has a very short plasma half-life.The majority of current GLP-1RAs are administered by subcutaneous injection once a week.They are potent in glucose lowering without leading to hypoglycaemia,stimulate weight loss in obese individuals and lead to cardiovascular and renal protection.The landscape in relation to GLP-1RAs is broadening rapidly,with different formulations and their combination with other peptides to facilitate both glucose lowering and weight loss.There is a need for more information relating to the effects of GLP-1RAs to induce gastrointestinal symptoms and slow gastric emptying which is likely to allow their use to become more effective and personalised.
文摘Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.
文摘Glucagon-like peptide- 1 (GLP- 1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer's disease (AD) and T2DM share some common pathophysiologic hallmarks, such as amyloid β (Aβ), phosphoralation of tau protein, and glycogen synthase kinase-3. GLP-1 possesses neurotropic properties and can reduce amyloid protein levels in the brain. Based on extensive studies during the past decades, the understanding on AD leads us to believe that the primary targets in AD are the Aβ and tau protein. Combine these findings, GLP- 1 is probably a promising agent in the therapy of AD. This review was focused on the biochemistry and physiology of GLP- 1, communities between T2DM and AD, new progresses of GLP - 1 in treating T2MD and improving some pathologic hanmarks of AD.
文摘Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of case reports show an association of GLP-1receptor agonists,mainly exenatide,with the development of acute kidney injury.The present review aims to present the available data regarding the effects of GLP-1 receptor agonists on renal function,their use in subjects with chronic renal failure and their possible association with acute kidney injury.Based on the current evidence,exenatide is eliminated by renal mechanisms and should not be given in patients with severe renal impairment or end stage renal disease.Liraglutide is not eliminated by renal or hepatic mechanisms,but it should be used with caution since there are only limited data in patients with renal or hepatic impairment.There is evidence from animal studies that GLP-1 receptor agonists exert protective role in diabetic nephropathy with mechanisms that seem to be independent of their glucose-lowering effect.Additionally,there is evidence that GLP-1 receptor agonists influence water and electrolyte balance.These effects may represent new ways to improve or even prevent diabetic nephropathy.
文摘To investigate the effect of calcitonin gene related peptide (CGRP) on bone resorption mediated by interleukin 1β(IL 1β) in vitro , the osteoclasts isolated from the long bones of newborn SD rats were co cultured with osteoblasts on ivory slices placed in 24 well plates . 24 h later, conditioned media containing CGRP and/or IL 1β were added to the wells respectively, and continued culturing for 48 h. After the cells were stripped off by ultrasonication, the ivory slices were stained in toludine blue. The number and the total area of resorption lacunae on each slice were measured by computer imaging analysis system. Our results showed that IL 1β significantly stimulated bone resorption, but CGRP inhibited the effect mediated by IL 1β in a dose dependent manner. It is suggested that CGRP may inhibit osteoclastic bone resorption through two ways: One is that CGRP functions directly on osteoclasts to block their activation; the other is that CGRP regulates the release of cytokines by osteoblasts and indirectly affects the function of osteoclasts.
文摘Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose(3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed antiobesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and longterm weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need.
文摘In order to investigate the immunological damage in rat immunized with AT1-receptor peptide, 18 male Wistar rats were divided into two groups: immunized-group (n=12), each rat was immunized with 150 μg AT 1-receptor petide coupled to bovine serum albumin, together with Freund's adjuvant. Control group (n=6), sham-immunized, 'immunized liquid' was same as immunized-group except AT1-receptor peptide. Systolic blood pressure (SBP) was measured by using the tail-cuff technique, antibody against AT1-receptor peptide detected by using ELISA method, and left ventricular myocardium and renal cortex sections were observed under light and electron microscopy. There was no significant difference in SBP and light microscopic observation of the tissue sections between the immunized-group and control group. The O.D. value of anti-AT1-receptor peptide antiserum was significantly higher in the immunized-group than in the rats before immunization and control group (P<0.01). Positive rate in the immunized-group was 100 %, while 0 % in the control group. Ultramicroscopic morphology showed potential myocardial injury, including: increase in number of mitochondria, swelling of many mitochondria with reduction in number or absence of their cristae and cristolysis, disorder of the cardiac myofibrils, and myofibrillar disruption and myocytolysis. And lysosomes were increased in renal tubular epithelia. The AT1-receptor peptide could induce to generate the antibody against AT1-receptor peptide and lead to myocardial and renal damage in rats.
基金Supported by:the Medicine and Health Scientific Research Projects of Shandong Province,No. 2007HZ065
文摘BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.
基金the National Natural Science Foundation of China(No.30570363)Distinguished Young Scholars Fund of Jilin Province, China(No.20050112)the New Century Excellent Talents
文摘Virion infectivity factor(Vif) is one of the six accessory proteins of HIV-1 and is necessary for viral infectivity. Human Apolipoprotein B editing complex protein 3G(h-APOBEC3G) is a cytidine deaminase only expressed in "nonpermissive" cells and exhibits virus suppressive activity. With the aid of a Cullin-5 E3 ligase, Vif induces h-APOBEC3G degradation and with the destruction of this ligase, Vif is functionally inactive. Therefore, it is expected that blocking this E3 pathway would be a new therapeutic strategy against HIV-1 infection. In this article, the authors' took sequence alignment of the N-termini of Cullin-5 and three other members of the Cullin protein family, respectively. A set of small peptides has been synthesized based on the sequence comparison results and possible Vif-Cullin-5 interaction domains. Moreover, it has been demonstrated that several peptides can reduce virus infectivity in "nonpermissive" cells with a dose-responsive manner, but not in "permissive" cells. The results also indicate that the loss of viral infectivity may be because of the increase of APOBEC3G amount in the peptide-treated cells. It is concluded that peptides derived from Cullin-5 can block the APOBEC3G degradation induced by Vif and suppress HIV-1 infectivity. Therefore this study starts a novel strategy for the development of a new HIV-1 inhibitor.
基金supported by the National Natural Science Foundation of China,No.31670832,31470807,31270872a grant from the National Key Research and Development Program of China,No.2016YFA0500301a grant from the State Key Laboratory of Protein and Plant Gene Research,College of Life Sciences,Peking University,China
文摘Previous studies have shown that sirtuin 1(SIRT1) reduces the production of neuronal amyloid beta(Aβ) and inhibits the inflammatory response of glial cells, thereby generating a neuroprotective effect against Aβ neurotoxicity in animal models of Alzheimer's disease. However, the protective effect of SIRT1 on astrocytes is still under investigation. This study established a time point model for the clearance of Aβ in primary astrocytes. Results showed that 12 hours of culture was sufficient for endocytosis of oligomeric Aβ, and 36 hours sufficient for effective degradation. Immunofluorescence demonstrated that Aβ degradation in primary astrocytes relies on lysosome function. Enzymatic agonists or SIRT1 inhibitors were used to stimulate cells over a concentration gradient. Aβ was co-cultured for 36 hours in medium. Western blot assay results under different conditions revealed that SIRT1 relies on its deacetylase activity to promote intracellular Aβ degradation. The experiment further screened SIRT1 using quantitative proteomics to investigate downstream, differentially expressed proteins in the Aβ degradation pathway and selected the ones related to enzyme activity of SIRT1. Most of the differentially expressed proteins detected are close to the primary astrocyte lysosomal pathway. Immunofluorescence staining demonstrated that SIRT1 relies on its deacetylase activity to upregulate lysosome number in primary astrocytes. Taken together, these findings confirm that SIRT1 relies on its deacetylase activity to upregulate lysosome number, thereby facilitating oligomeric Aβ degradation in primary astrocytes.
基金Project supported by the Research Fund for the Doctoral Program of Higher Education.
文摘The interaction between HIV-1 DNA and five cyclic peptides (CP1-CP5) was investigated using electrospray ionization mass spectrometry (ESI-MS). It revealed that CP1 [c(Ala-Tyr-Leu-Ala-Gly)] and CP4 [c(Pro-D-Tyr-Leu-D-Ala-Gly)] have the higher binding affinity with the duplex DNA among the five cyclic peptides.
文摘AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge.Following a lipid challenge,plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h.Incretin hormones [glucagon like peptide-1(GLP-1),peptide tyrosine-tyrosine(PYY) and glucose dependent insulinotropic polypeptide(GIP)] were then quantitated.The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice.Additionally,a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition.To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition,other interventions [inhibitors of dipeptidyl peptidase-IV(sitagliptin),pancreatic lipase(Orlistat),GPR119 knockout mice] were evaluated.RESULTS DGAT1 deficient mice and wildtype C57/BL6J mice werelipid challenged and levels of both active and total GLP-1 in the plasma were increased.This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice.Furthermore,PF-04620110 was able to dose responsively increase GLP-1 and PYY,but blunt GIP at all doses of PF-04620110 during lipid challenge.Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1.In contrast,in a combination study with Orlistat,the ability of PF-04620110 to elicit an enhanced incretin response was abrogated.To further explore this observation,GPR119 knockout mice were evaluated.In response to a lipid challenge,GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY.However,PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice.CONCLUSION Collectively,these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.
基金supported by the National Science Foundation of China (No. 30800402)
文摘TMTP1, a 5-amino acid peptide NVVRQ, obtained by using the flagella peptide library screening in our previous studies, can be used for the labeling of malignant in situ and metastatic lesions, and even micro-metastases. In this study, TMTP1 was assessed for its ability to specifically target the malignant hematopoietic cells and metastatic lesions of hematological malignancies. FITC-TMTP1 was chemically synthesized. Immunofluorescence assay and competitive test were carried out to determine the specific binding capacity of TMTPl to hematological malignant cell lines, including HL60, k562, SHI-1, Jurkat, Raji, El-4 and umbilical cord blood mononuclear cells. Mononuclear cells were isolated from the bone marrow of healthy subjects and patients with chronic myeloid leukemia. Then the cells were co-clutured with TMTP1 or scrambled peptides and the binding and affinity of TMTP1 peptide to the primary cells of hematological malignancies were flow cytometrically analyzed. The binding speci-ficity of TMTP1 to target hematological malignancies was measured in vivo by intravenous injection of FITC-conjugated TMTP1 into El-4 lymphoma-bearing mice. The results showed that TMTP1 specifi-cally bound to the cells of a series of hematological malignancies, including HL60, k562, Jurkat, Raji , El-4 and chronic myeloid leukemia primary cells but not to bone marrow mononuclear cells from healthy subjects. By contrast, TMTP1 could bind to the metastatic foci of lymphoma originating from the EL-4 cell line while the scrambled peptide failed to do so. Moreover, the occult metastases could be identified, with high specificity, by detecting FITC-TMTP1. We are led to conclude that TMTP1, as a novel tumor-homing peptide, can serve as a marker for primary malignant and metastatic lesions for the early diagnosis of hematological malignances and a carrier of anticancer drugs for cancer treatment.
基金funded by the National Natural Science Foundation of China,No.31571236(to YHK)the Key Laboratory of Trauma and Neural Regeneration(Peking University),Ministry of Education,China,No.BMU2019XY007-01(to YHK)+1 种基金the Ministry of Education Innovation Program of China,No.IRT_16R01(to YHK)the Research and Development Funds of Peking University People’s Hospital,China,Nos.RDH2017-01(to YHK),RDY2018-09(to HL)。
文摘Neutrophil peptide 1 belongs to a family of peptides involved in innate immunity. Continuous intramuscular injection of neutrophil peptide 1 can promote the regeneration of peripheral nerves, but clinical application in this manner is not convenient. To this end, the effects of a single intraoperative administration of neutrophil peptide 1 on peripheral nerve regeneration were experimentally observed. A rat model of sciatic nerve crush injury was established using the clamp method. After model establishment, a normal saline group and a neutrophil peptide 1 group were injected with a single dose of normal saline or 10 μg/mL neutrophil peptide 1, respectively. A sham group, without sciatic nerve crush was also prepared as a control. Sciatic nerve function tests, neuroelectrophysiological tests, and hematoxylin-eosin staining showed that the nerve conduction velocity, sciatic functional index, and tibialis anterior muscle fiber cross-sectional area were better in the neutrophil peptide 1 group than in the normal saline group at 4 weeks after surgery. At 4 and 8 weeks after surgery, there were no differences in the wet weight of the tibialis anterior muscle between the neutrophil peptide 1 and saline groups. Histological staining of the sciatic nerve showed no significant differences in the number of myelinated nerve fibers or the axon cross-sectional area between the neutrophil peptide 1 and normal saline groups. The above data confirmed that a single dose of neutrophil peptide 1 during surgery can promote the recovery of neurological function 4 weeks after sciatic nerve injury. All the experiments were approved by the Medical Ethics Committee of Peking University People's Hospital, China(approval No. 2015-50) on December 9, 2015.
基金supported by the grants from the National Key Basic Research Program of China Ministry of Science and Technology(Grant No.2011CB100801)Funds for Distinguished Young Scientists of Zhejiang Province(R16C170002)
文摘Background: It is wel known that peptides play a vital role in the nutrition and health of dairy cows. Bovine oligopeptide transporter 1(bP epT 1) is involved in the peptide transport process in the gastrointestinal tracts of dairy cows. However,little information is known in the characteristics of bP epT 1. Therefore, the purpose of this study was to characterize bP epT 1 functional y using a mammalian cel expression system. The uptake of radiolabeled dipeptide glycyl-sarcosine([3 H]-Gly-Sar)into the bP epT 1-transfected Chinese hamster ovary cel s was measured at various pH and substrate concentrations and with or without 15 other smal peptides that contained Met or Lys.Results: Western blot results showed that the abundance of bP epT 1 protein in the jejunum and ileum are the highest in the gastrointestinal tract of dairy cows. The uptake of [3 H]-Gly-Sar by b Pep T1-Chinese hamster ovary cells was dependent on time, p H, and substrate concentration, with a low Kmvalue of 0.94 ± 0.06 mmol/L and a maximum velocity of 20.80 ± 1.74 nmol/(mg protein · 5 min). Most of the di-and tripeptides were the substrates of b Pep T1,based on substrate-competitive studies. However, bP epT 1 has a higher affinity to the peptides with shorter chains, greater hydrophobicity, and negative or neutral charges.Conclusions: These results demonstrated for the first time the functional characteristics of bP epT 1, and they provide a new insight and better understanding into its vital role in absorbing a wide range of peptides from the digestive tract of dairy cows.