The taste presentation and receptor perception mechanism of the salty peptide of Stropharia rugosoannulata were predicted and verified using peptide omics and molecular interaction techniques.The combination of aspart...The taste presentation and receptor perception mechanism of the salty peptide of Stropharia rugosoannulata were predicted and verified using peptide omics and molecular interaction techniques.The combination of aspartic acid(D)and glutamic acid(E),or peptide fragments composed of arginine(R),constitute the characteristic taste structural basis of salty peptides of S.rugosoannulata.The taste intensity of the salty peptide positively correlates with its concentration within a specific concentration range(0.25–1.0 mg/mL).The receptor more easily recognizes the first amino acid residue at the N-terminal of salty peptides and the aspartic acid residue in the peptides.GLU513,ASP707,and VAL508 are the critical amino acid residues for the receptor to recognize salty peptides.TRPV1 is specifically the receptor for recognizing salty peptides.Hydrogen bonds and electrostatic interactions are the main driving forces for the interactions between salty peptides and TRPV1 receptors.KSWDDFFTR has the most potent binding capacity with the receptor and has tremendous potential for application in sodium salt substitution.This study confirmed the taste receptor that specifically recognizes salty peptides,analyzed the receptor-peptide binding interaction,and provided a new idea for understanding the taste receptor perception of salty peptides.展开更多
The prebiotic synthesis of peptides prior to ribosome-catalyzed processes remains an enigma.The synthesis of abiotic peptides from amino acids(AAs)is primarily constrained by high activation energies and unfavorable t...The prebiotic synthesis of peptides prior to ribosome-catalyzed processes remains an enigma.The synthesis of abiotic peptides from amino acids(AAs)is primarily constrained by high activation energies and unfavorable thermodynamics,necessitating the identification of plausible prebiotic alternatives for synthesizing prebiotic peptides.Here we present a plausible pathway to the formation of prebiotic peptides,wherein oligopeptides,oligopeptide amides,and cyclic oligopeptides can be directly synthesized from amino acid amides(AA-NH2)under wet–dry cycle conditions without the need for any enhancers.The subsequent investigation revealed that AA-NH2 demonstrated more favorable thermodynamic reaction effects than AAs in peptide formation.In contrast to the polymerization of AAs,the process of peptide formation through the polymerization of AA-NH2 was significantly simplified.Additionally,AA-NH2 was discovered to function as a“bridge”for the formation of peptides from AAs,thereby facilitating their participation in the synthesis of intricate peptide structures.On the basis of these findings,a plausible mechanism for the prebiotic origin network of peptides under primordial Earth conditions has been proposed.Overall,this research presents a plausible pathway for the generation of prebiotic peptides and peptide libraries within prebiotic environments.展开更多
DNA nanostructures have emerged as promising carriers for drug delivery.However,challenges such as low stability,poor cellular uptake efficiency,and vulnerability to lysosomal degradation still hinder their therapeuti...DNA nanostructures have emerged as promising carriers for drug delivery.However,challenges such as low stability,poor cellular uptake efficiency,and vulnerability to lysosomal degradation still hinder their therapeutic potential.In this study,we demonstrate the coating of tetrahedral DNA frameworks(TDF)with the endosomolytic peptide L17E through electrostatic interactions to address these issues.Our findings highlight that L17E coating substantially enhances the stability of TDFs and improves their uptake efficiency into RAW264.7 cells through endocytosis and macropinocytosis.Moreover,L17E coating enables efficient endosomal release of TDFs.Finally,we employed L17E-coated TDF to deliver osteogenic growth peptide and demonstrated its potential applications in inhibiting periodontitis both in vitro and in vivo.This straightforward and cost-effective strategy holds promise for advancing the biomedical applications of DNA nanostructures.展开更多
[Objective] The study was to explore whether antimicrobial activity of the antimicrobial peptides extracted from immunized Tenebrio molitor varied with different pathogens as inducers.[Method]By inducing T.molitor hun...[Objective] The study was to explore whether antimicrobial activity of the antimicrobial peptides extracted from immunized Tenebrio molitor varied with different pathogens as inducers.[Method]By inducing T.molitor hungry larvaes to generate immune response via feeding with bacteria and with fungi or actinomycete post to pricking,the antimicrobial peptides extracts were obtained by grinding and centrifuging the cultures.Its antimicrobial activity against 26 pathogens was measured by bacteriostatic ring,and evaluated by trisection to four types and inhibitory spectrum.[Result]Both the antimicrobial activity and antimicrobial spectrum of the antimicrobial peptides extracts varied remarkably among different pathogens as inducers.[Conclusion]Bio-control used strains have obvious advantage in inducing the insect to express body fluid immunity material-antimicrobial peptides.展开更多
Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces...Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms.展开更多
Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alc...Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.展开更多
This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instan...This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.展开更多
The discovery of antibiotics marked a golden age in the revolution of human medicine. However,decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevita...The discovery of antibiotics marked a golden age in the revolution of human medicine. However,decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant(MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci(VRE), methicillin-resistant Staphylococcus aureus(MRSA), and extendedspectrum β-lactamases(ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options,increased hospital stay, and exorbitant medical costs. Antimicrobial peptides(AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.展开更多
Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanis...Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides(ADBP)on HUA-induced kidney damage.In the present study,we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents.In vitro results found that ADBP protected uric acid(UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense.In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice,evidenced by a remarkable decrease in serum UA,creatinine and blood urea nitrogen,improving kidney UA excretion,antioxidant defense and histological kidney deterioration.Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction.Intriguingly,ADBP restored the gut microbiome homeostasis in CKD mice,especially with respect to the elevated helpful microbial abundance,and the decreased harmful bacterial abundance.This study demonstrated that ADBP displayed great nephroprotective effects,and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.展开更多
With the widespread ban on the use of antibiotics in swine feed, alternative measures need to be sought to maintain swine health and performance, Antimicrobial peptides (AMPs) are part of the nonspecific defense sys...With the widespread ban on the use of antibiotics in swine feed, alternative measures need to be sought to maintain swine health and performance, Antimicrobial peptides (AMPs) are part of the nonspecific defense system and are natural antibiotics produced by plants, insects, mammalians, and micro-organisms as well as by chemical synthesis. Due to their broad microbicidal activity against various fungi, bacteria and enveloped viruses AMPs are a potential alternative to conventional antibiotics for use in swine production. This review focuses on the structure and mechanism of action of AMPs, as well as their effects on performance, immune function and intestinal health in pigs. The aim is to provide support for the application of AMPs as feed additives replacing antibiotics in swine nutrition.展开更多
Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavio...Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein-mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure-function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbiditv associated with tooth loss.展开更多
Cathelicidins are a major family of antimicrobial peptides present in vertebrate animals with potent microbicidal and immunomodulatory activities. Four cathelicidins, namely fowlicidins 1 to 3 and cathelicidin B1, hav...Cathelicidins are a major family of antimicrobial peptides present in vertebrate animals with potent microbicidal and immunomodulatory activities. Four cathelicidins, namely fowlicidins 1 to 3 and cathelicidin B1, have been identified in chickens. As a first step to understand their role in early innate host defense of chickens, we examined the tissue and developmental expression patterns of all four cathelicidins. Real-time PCR revealed an abundant expression of four cathelicidins throughout the gastrointestinal, respiratory, and urogenital tracts as well as in all primary and secondary immune organs of chickens. Fowlicidins 1 to 3 exhibited a similar tissue expression pattern with the highest expression in the bone marrow and lung, while cathelicidin B1 was synthesized most abundantly in the bursa of Fabricius. Additionally, a tissue-specific regulatory pattern was evident for all four cathelicidins during the first 28 days after hatching. The expression of fowlicidins 1 to 3 showed an age-dependent increase both in the cecal tonsil and lung, whereas all four cathelicidins were peaked in the bursa on day 4 after hatching, with a gradual decline by day 28. An abrupt augmentation in the expression of fowlicidins 1 to 3 was also observed in the cecum on day 28, while the highest expression of cathelicidin B1 was seen in both the lung and cecal tonsil on day 14. Collectively, the presence of cathelicidins in a broad range of tissues and their largely enhanced expression during development are suggestive of their potential important role in early host defense and disease resistance of chickens.展开更多
Recent years have witnessed growing interest in the role of peptides in animal nutrition. Chemical, enzymatic, or microbial hydrolysis of proteins in animal by-products or plant-source feedstuffs before feeding is an ...Recent years have witnessed growing interest in the role of peptides in animal nutrition. Chemical, enzymatic, or microbial hydrolysis of proteins in animal by-products or plant-source feedstuffs before feeding is an attractive means of generating high-quality small or large peptides that have both nutritional and physiological or regulatory functions in livestock, poultry and fish. These peptides may also be formed from ingested proteins in the gastrointestinal tract, but the types of resultant peptides can vary greatly with the physiological conditions of the animals and the composition of the diets. In the small intestine, large peptides are hydrolyzed to small peptides,which are absorbed into enterocytes faster than free amino acids(AAs) to provide a more balanced pattern of AAs in the blood circulation. Some peptides of plant or animal sources also have antimicrobial, antioxidant,antihypertensive, and immunomodulatory activities. Those peptides which confer biological functions beyond their nutritional value are called bioactive peptides. They are usually 2–20 AA residues in length but may consist of 〉20AA residues. Inclusion of some(e.g. 2–8%) animal-protein hydrolysates(e.g., porcine intestine, porcine mucosa,salmon viscera, or poultry tissue hydrolysates) or soybean protein hydrolysates in practical corn-and soybean mealbased diets can ensure desirable rates of growth performance and feed efficiency in weanling pigs, young calves,post-hatching poultry, and fish. Thus, protein hydrolysates hold promise in optimizing the nutrition of domestic and companion animals, as well as their health(particularly gut health) and well-being.展开更多
To obtain the maximum angiotensin-I converting enzyme(ACE) inhibitory activity, the protein hydrolysis conditions of the jellyfish Rhopilema hispidum were optimized using response surface methodology(RSM). Trypsin was...To obtain the maximum angiotensin-I converting enzyme(ACE) inhibitory activity, the protein hydrolysis conditions of the jellyfish Rhopilema hispidum were optimized using response surface methodology(RSM). Trypsin was selected to produce R. hispidum protein hydrolysates(RPH) with ACE inhibitory activity. The optimal parameters for producing protein hydrolysates with the highest ACE inhibitory activity were as follows: hydrolysis time 5 h, hydrolysis temperature 50℃, and the enzyme-to-substrate ratio 6%. Under these conditions, the ACE inhibitory rate of RPH could reach 64.28% ± 5.72%. In addition, RPH contained high levels of Gly, Glu, Pro, Ala, Asp and Arg, with a molecular weight distribution range of 0.32–6.84 kDa. The following three novel ACE inhibitory peptides were isolated and identified: Ile-Gly-Glu-Thr-Gly-Pro, Gly-Ala-Thr-Gly-Pro-Ala-Gly-Tyr-Val and Gly-AlaPhe-Gly-Pro-Gly-Gly-Leu-Val-Gly-Arg-Pro. The IC_(50) values of the ACE inhibitory activity of these three purified peptides were 19.07, 27.42 and 31.26 μmol L^(-1), respectively. These results suggested that proteins and peptides isolated from R. hispidum could be utilized as antihypertensive functional food sources.展开更多
Antimicrobial peptides are widely distributed in nature,existing in organisms of plants,insects,and vertebrates.It has been approved that antimicrobial peptides have broad spectrum antimicrobial activities,and play a ...Antimicrobial peptides are widely distributed in nature,existing in organisms of plants,insects,and vertebrates.It has been approved that antimicrobial peptides have broad spectrum antimicrobial activities,and play a key modulatory role in the innate immune response and tumor inhibiting activity.Due to the special action mechanism,the antimicrobial peptides become a hot field of genetic engineering.In the present paper,the general properties,mechanism of action,application value,existing problems,the latest progress and the expression strategy were discussed.展开更多
Alzheimer's disease(AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta(Aβ) peptide in human brains. Oxidative stress and...Alzheimer's disease(AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta(Aβ) peptide in human brains. Oxidative stress and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides(200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase(SOD), glutathione(GSH), acetylcholine esterase(ACh E), and the content of malondialdehyde(MDA) as well as the level of nitric oxide(NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2'-deoxyguanosine(8-OHd G), tumor necrosis factor-α(TNF-α), interleukin 1β(IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase(i NOS) and nuclear factor κB(NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides(400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.展开更多
The Manchurian walnut(Juglans mandshurica Maxim.) is rich in proteins, whereas this resource has not been used efficiently. The antifatigue, antioxidative and immunoregulatory effects of Manchurian walnut hydrolysate ...The Manchurian walnut(Juglans mandshurica Maxim.) is rich in proteins, whereas this resource has not been used efficiently. The antifatigue, antioxidative and immunoregulatory effects of Manchurian walnut hydrolysate peptides(MWHPs)were evaluated in this study. MWHPs with a degree of hydrolysis of 32.23% were ultrafiltered and divided into three fractions,namely, high(> 10 k Da), medium(3–10 kDa), and low molecular weight(< 3 kDa), and then fed to mice continuously at doses of 200, 400 or 800 mg/(kg·d). The antifatigue, antioxidative, and immunoregulatory effects of the peptides were tested on the second and fourth weeks of MWHP administration. Results showed that low-molecular-weight MWHPs exerted significant antifatigue(prolonging swimming time, elevating liver glycogen contents, and reducing lactic acid contents), antioxidative(enhancing superoxide dismutase(SOD), GSH-Px, and catalase(CAT) activities and reducing malondialdehyde(MDA) content), and immunoregulatory(raising the immune-organ index and promoting T-lymphocyte proliferation and s Ig A secretion in the intestinal tract) effects. This research indicates that MWHPs have potential applications in health care and may be developed as a base for new functional foods.展开更多
It was found that phosphorylation of small peptide could improve the sensitivity in mass spectrometry. Density functional theory calculations showed that the energy for the protonation of N-(O,O'-dimethyl) phospho...It was found that phosphorylation of small peptide could improve the sensitivity in mass spectrometry. Density functional theory calculations showed that the energy for the protonation of N-(O,O'-dimethyl) phosphoryl glycylglycine is lower than that of glycylglycine. These could help to understanding the experimental results.展开更多
Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in...Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in the neuroprotection mechanism remains to be elucidated.In this study,RNA-sequencing and miRNA-sequencing were used to independently identify differentially expressed mRNAs and small RNAs profiles in Pb^(2+)-treated primary fetal rat cortical neurons and then the correlated miRNA-mRNA target pairs were obtained.It was found that 34 mRNAs related to oxidative phosphorylation could be reversed by pretreatment of TSeMMM and SeMDPGQQ.The protective effect of TSeMMM and SeMDPGQQ was mediated by upregulation of miR-107-3p,which downregulates the ATPase H+transporting V0 subunit e1(Atp6v0e1)mRNA level.A zebrafish model was applied to verify the relevance between the targeted mRNA and miRNA by real-time quantitative PCR.The results indicated that miR-107-3p was a potential therapeutic target to achieve neuroprotection of Se-containing peptides via stimulation of Atp6v0e1.展开更多
Globally,the prevalence of anxiety and depression has reached epidemic proportions.Food-derived protein hydrolysates and peptides delivered through dietary supplementation can avoid the negative risks associated with ...Globally,the prevalence of anxiety and depression has reached epidemic proportions.Food-derived protein hydrolysates and peptides delivered through dietary supplementation can avoid the negative risks associated with traditional pharmaceuticals while delivering superior anxiolytic and antidepressant effects.This review summarizes current research on food-derived anxiolytic and antidepressant protein hydrolysates and peptides,and subsequently analyses their physicochemical characteristics and elaborates on their mechanisms.The aim of this work is to contribute to the in-depth study and provide a theoretical foundation for the development of related products to better serve patients with anxiety and depression.展开更多
基金funded by Natural Science Foundation of Shanghai,China(No.23ZR1426100)SAAS program for Excellent Research Team(No.G202203)。
文摘The taste presentation and receptor perception mechanism of the salty peptide of Stropharia rugosoannulata were predicted and verified using peptide omics and molecular interaction techniques.The combination of aspartic acid(D)and glutamic acid(E),or peptide fragments composed of arginine(R),constitute the characteristic taste structural basis of salty peptides of S.rugosoannulata.The taste intensity of the salty peptide positively correlates with its concentration within a specific concentration range(0.25–1.0 mg/mL).The receptor more easily recognizes the first amino acid residue at the N-terminal of salty peptides and the aspartic acid residue in the peptides.GLU513,ASP707,and VAL508 are the critical amino acid residues for the receptor to recognize salty peptides.TRPV1 is specifically the receptor for recognizing salty peptides.Hydrogen bonds and electrostatic interactions are the main driving forces for the interactions between salty peptides and TRPV1 receptors.KSWDDFFTR has the most potent binding capacity with the receptor and has tremendous potential for application in sodium salt substitution.This study confirmed the taste receptor that specifically recognizes salty peptides,analyzed the receptor-peptide binding interaction,and provided a new idea for understanding the taste receptor perception of salty peptides.
基金National Natural Science Foundation of China(Nos.42388101,92256203,and 42003062)Fundamental Research Funds for the Provincial Universities of Zhejiang(No.SJLY2023007)+1 种基金Technology and Engineering Center for Space Utilization,Chinese Academy of Sciences(No.YYWT-0901-EXP-16)Ningbo Top Talent Project(No.215-432094250).
文摘The prebiotic synthesis of peptides prior to ribosome-catalyzed processes remains an enigma.The synthesis of abiotic peptides from amino acids(AAs)is primarily constrained by high activation energies and unfavorable thermodynamics,necessitating the identification of plausible prebiotic alternatives for synthesizing prebiotic peptides.Here we present a plausible pathway to the formation of prebiotic peptides,wherein oligopeptides,oligopeptide amides,and cyclic oligopeptides can be directly synthesized from amino acid amides(AA-NH2)under wet–dry cycle conditions without the need for any enhancers.The subsequent investigation revealed that AA-NH2 demonstrated more favorable thermodynamic reaction effects than AAs in peptide formation.In contrast to the polymerization of AAs,the process of peptide formation through the polymerization of AA-NH2 was significantly simplified.Additionally,AA-NH2 was discovered to function as a“bridge”for the formation of peptides from AAs,thereby facilitating their participation in the synthesis of intricate peptide structures.On the basis of these findings,a plausible mechanism for the prebiotic origin network of peptides under primordial Earth conditions has been proposed.Overall,this research presents a plausible pathway for the generation of prebiotic peptides and peptide libraries within prebiotic environments.
基金supported by the National Key R&D Program of China(2020YFA0908900)Universities Stable Funding Key Projects(WDZC20200821104802001)+2 种基金the State Key Laboratory of Chemical Oncogenomicsthe Institute of Biomedical Health Technology and Engineering of Shenzhen Bay LaboratoryGuangDong Basic and Applied Basic Research Foundation(2021A1515110819).
文摘DNA nanostructures have emerged as promising carriers for drug delivery.However,challenges such as low stability,poor cellular uptake efficiency,and vulnerability to lysosomal degradation still hinder their therapeutic potential.In this study,we demonstrate the coating of tetrahedral DNA frameworks(TDF)with the endosomolytic peptide L17E through electrostatic interactions to address these issues.Our findings highlight that L17E coating substantially enhances the stability of TDFs and improves their uptake efficiency into RAW264.7 cells through endocytosis and macropinocytosis.Moreover,L17E coating enables efficient endosomal release of TDFs.Finally,we employed L17E-coated TDF to deliver osteogenic growth peptide and demonstrated its potential applications in inhibiting periodontitis both in vitro and in vivo.This straightforward and cost-effective strategy holds promise for advancing the biomedical applications of DNA nanostructures.
基金Supported by Natural Science Foundation of Hebei Province(C200700450)~~
文摘[Objective] The study was to explore whether antimicrobial activity of the antimicrobial peptides extracted from immunized Tenebrio molitor varied with different pathogens as inducers.[Method]By inducing T.molitor hungry larvaes to generate immune response via feeding with bacteria and with fungi or actinomycete post to pricking,the antimicrobial peptides extracts were obtained by grinding and centrifuging the cultures.Its antimicrobial activity against 26 pathogens was measured by bacteriostatic ring,and evaluated by trisection to four types and inhibitory spectrum.[Result]Both the antimicrobial activity and antimicrobial spectrum of the antimicrobial peptides extracts varied remarkably among different pathogens as inducers.[Conclusion]Bio-control used strains have obvious advantage in inducing the insect to express body fluid immunity material-antimicrobial peptides.
基金supported by the Yunnan Key Project of Science and Technology(202202AE090001)Postdoctoral Directional Training Foundation of Yunnan Province(E23174K2)Postdoctoral Research Funding Projects of Yunnan Province,China(E2313442)。
文摘Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms.
基金supported by the National Key Research and Development Program of China:Investigate the mechanism of formation and control technologies of Chinese traditional and ethnic food quality(2021YFD2100100)。
文摘Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.
基金granted by the National Key R&D Program of China (2021YFD21001005)National Natural Science Foundation of China (31972102,32101980)+1 种基金Special key project of Chongqing technology innovation and application development (cstc2021jscx-cylhX0014)Chongqing Technology Innovation and Application Development Special Project (cstc2021jscx-tpyzxX0014)。
文摘This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.
基金supported by the National Natural Science Foundation of China(21761142002 and 31801975)Chinese Academy of Sciences(XDB31000000,SAJC201606,KFZD-SW-219-2,KFJ-BRP-008,and KGFZD-135-17-011)Yunnan Province Grant(2015HA023)
文摘The discovery of antibiotics marked a golden age in the revolution of human medicine. However,decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant(MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci(VRE), methicillin-resistant Staphylococcus aureus(MRSA), and extendedspectrum β-lactamases(ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options,increased hospital stay, and exorbitant medical costs. Antimicrobial peptides(AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
基金financially supported by Shenzhen Agricultural Development Special Fund(Fishery)Agricultural High-Tech Project([2021]735)the Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022)Youth Science Foundation Project(32101936)。
文摘Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides(ADBP)on HUA-induced kidney damage.In the present study,we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents.In vitro results found that ADBP protected uric acid(UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense.In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice,evidenced by a remarkable decrease in serum UA,creatinine and blood urea nitrogen,improving kidney UA excretion,antioxidant defense and histological kidney deterioration.Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction.Intriguingly,ADBP restored the gut microbiome homeostasis in CKD mice,especially with respect to the elevated helpful microbial abundance,and the decreased harmful bacterial abundance.This study demonstrated that ADBP displayed great nephroprotective effects,and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.
基金supported by the National Natural Science Foundation of China(No.3133007531372326)
文摘With the widespread ban on the use of antibiotics in swine feed, alternative measures need to be sought to maintain swine health and performance, Antimicrobial peptides (AMPs) are part of the nonspecific defense system and are natural antibiotics produced by plants, insects, mammalians, and micro-organisms as well as by chemical synthesis. Due to their broad microbicidal activity against various fungi, bacteria and enveloped viruses AMPs are a potential alternative to conventional antibiotics for use in swine production. This review focuses on the structure and mechanism of action of AMPs, as well as their effects on performance, immune function and intestinal health in pigs. The aim is to provide support for the application of AMPs as feed additives replacing antibiotics in swine nutrition.
基金The research was mainly supported by NSF-MRSEC (DMR# 0520567) at the University of Washington (MG, MH, HF, RS, EEO, CT and MS)by NIH,National Institute of Dental and Craniofacial Research grant DE13045 (MLS)+2 种基金grant DE15109 to MJS (The studies described here were completed while MJS was at the University of Washington)JAH was supported by the University of Washington, Warren G. Magnuson Scholars Awardthe NIH,National Institute of Dental and Craniofacial Research Ruth L. Kirschstein Individual pre-doctoral dental scientist fellowship, 5F30DE01752
文摘Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein-mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure-function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbiditv associated with tooth loss.
基金supported by a United States Department of Agriculture grant2008-35204-04544Oklahoma Center for the Advancement of Science and Technology grants HR07-113, and AR07.2-087, and Oklahoma Agricultural Experiment Station project H-2811
文摘Cathelicidins are a major family of antimicrobial peptides present in vertebrate animals with potent microbicidal and immunomodulatory activities. Four cathelicidins, namely fowlicidins 1 to 3 and cathelicidin B1, have been identified in chickens. As a first step to understand their role in early innate host defense of chickens, we examined the tissue and developmental expression patterns of all four cathelicidins. Real-time PCR revealed an abundant expression of four cathelicidins throughout the gastrointestinal, respiratory, and urogenital tracts as well as in all primary and secondary immune organs of chickens. Fowlicidins 1 to 3 exhibited a similar tissue expression pattern with the highest expression in the bone marrow and lung, while cathelicidin B1 was synthesized most abundantly in the bursa of Fabricius. Additionally, a tissue-specific regulatory pattern was evident for all four cathelicidins during the first 28 days after hatching. The expression of fowlicidins 1 to 3 showed an age-dependent increase both in the cecal tonsil and lung, whereas all four cathelicidins were peaked in the bursa on day 4 after hatching, with a gradual decline by day 28. An abrupt augmentation in the expression of fowlicidins 1 to 3 was also observed in the cecum on day 28, while the highest expression of cathelicidin B1 was seen in both the lung and cecal tonsil on day 14. Collectively, the presence of cathelicidins in a broad range of tissues and their largely enhanced expression during development are suggestive of their potential important role in early host defense and disease resistance of chickens.
基金supported by the National Natural Science Foundation of China(31572416,31372319,31330075 and 31110103909)Hubei Provincial Key Project for Scientific and Technical Innovation(2014ABA022)+2 种基金Hubei Hundred Talent program,Natural Science Foundation of Hubei Province(2013CFA097)Agriculture and Food Research Initiative Competitive Grants(2014-67015-21770 and 2015-67015-23276)from the USDA National Institute of Food and AgricultureTexas A&M Agri Life Research(H-8200)
文摘Recent years have witnessed growing interest in the role of peptides in animal nutrition. Chemical, enzymatic, or microbial hydrolysis of proteins in animal by-products or plant-source feedstuffs before feeding is an attractive means of generating high-quality small or large peptides that have both nutritional and physiological or regulatory functions in livestock, poultry and fish. These peptides may also be formed from ingested proteins in the gastrointestinal tract, but the types of resultant peptides can vary greatly with the physiological conditions of the animals and the composition of the diets. In the small intestine, large peptides are hydrolyzed to small peptides,which are absorbed into enterocytes faster than free amino acids(AAs) to provide a more balanced pattern of AAs in the blood circulation. Some peptides of plant or animal sources also have antimicrobial, antioxidant,antihypertensive, and immunomodulatory activities. Those peptides which confer biological functions beyond their nutritional value are called bioactive peptides. They are usually 2–20 AA residues in length but may consist of 〉20AA residues. Inclusion of some(e.g. 2–8%) animal-protein hydrolysates(e.g., porcine intestine, porcine mucosa,salmon viscera, or poultry tissue hydrolysates) or soybean protein hydrolysates in practical corn-and soybean mealbased diets can ensure desirable rates of growth performance and feed efficiency in weanling pigs, young calves,post-hatching poultry, and fish. Thus, protein hydrolysates hold promise in optimizing the nutrition of domestic and companion animals, as well as their health(particularly gut health) and well-being.
基金supported by the National Natural Science Foundation of China (Nos. 81230057, 81372615, 81472262, 41306133 and 81200264)the Emerging Cutting-Edge Technology Joint Research projects of Shanghai (No. SHDC12012106)+6 种基金the Tongji University Subject Pilot Program (No. 162385)partly funded by the Shanghai Municipal Health and Family Planning Commission Project (Nos. 201540027 and 20174Y0236)the seed fund program of Shanghai University of Medicine & Health Sciences (No. HSMF-17-22-031)Excellent Young Medical Expert of Shanghai (No. 2017YQ048)Shangha Natural Science Foundation (No. 18ZR1431700)China Postdoctoral Science Foundation (No. 2017M610278)the Key Research and Developing Plan of Shandong Province (No. 2015GSF115015)
文摘To obtain the maximum angiotensin-I converting enzyme(ACE) inhibitory activity, the protein hydrolysis conditions of the jellyfish Rhopilema hispidum were optimized using response surface methodology(RSM). Trypsin was selected to produce R. hispidum protein hydrolysates(RPH) with ACE inhibitory activity. The optimal parameters for producing protein hydrolysates with the highest ACE inhibitory activity were as follows: hydrolysis time 5 h, hydrolysis temperature 50℃, and the enzyme-to-substrate ratio 6%. Under these conditions, the ACE inhibitory rate of RPH could reach 64.28% ± 5.72%. In addition, RPH contained high levels of Gly, Glu, Pro, Ala, Asp and Arg, with a molecular weight distribution range of 0.32–6.84 kDa. The following three novel ACE inhibitory peptides were isolated and identified: Ile-Gly-Glu-Thr-Gly-Pro, Gly-Ala-Thr-Gly-Pro-Ala-Gly-Tyr-Val and Gly-AlaPhe-Gly-Pro-Gly-Gly-Leu-Val-Gly-Arg-Pro. The IC_(50) values of the ACE inhibitory activity of these three purified peptides were 19.07, 27.42 and 31.26 μmol L^(-1), respectively. These results suggested that proteins and peptides isolated from R. hispidum could be utilized as antihypertensive functional food sources.
基金Supported by National 863 Project of China (2006AA10A206)
文摘Antimicrobial peptides are widely distributed in nature,existing in organisms of plants,insects,and vertebrates.It has been approved that antimicrobial peptides have broad spectrum antimicrobial activities,and play a key modulatory role in the innate immune response and tumor inhibiting activity.Due to the special action mechanism,the antimicrobial peptides become a hot field of genetic engineering.In the present paper,the general properties,mechanism of action,application value,existing problems,the latest progress and the expression strategy were discussed.
基金supported by the grants from the National Nature Science Foundation of China(No.81173065)Wuhan Science and Technology Plan Foundation(No.2012605-23182)
文摘Alzheimer's disease(AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta(Aβ) peptide in human brains. Oxidative stress and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides(200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase(SOD), glutathione(GSH), acetylcholine esterase(ACh E), and the content of malondialdehyde(MDA) as well as the level of nitric oxide(NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2'-deoxyguanosine(8-OHd G), tumor necrosis factor-α(TNF-α), interleukin 1β(IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase(i NOS) and nuclear factor κB(NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides(400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.
基金Supported by National High Technology Research and Development Program(No.2013AA102206-2)
文摘The Manchurian walnut(Juglans mandshurica Maxim.) is rich in proteins, whereas this resource has not been used efficiently. The antifatigue, antioxidative and immunoregulatory effects of Manchurian walnut hydrolysate peptides(MWHPs)were evaluated in this study. MWHPs with a degree of hydrolysis of 32.23% were ultrafiltered and divided into three fractions,namely, high(> 10 k Da), medium(3–10 kDa), and low molecular weight(< 3 kDa), and then fed to mice continuously at doses of 200, 400 or 800 mg/(kg·d). The antifatigue, antioxidative, and immunoregulatory effects of the peptides were tested on the second and fourth weeks of MWHP administration. Results showed that low-molecular-weight MWHPs exerted significant antifatigue(prolonging swimming time, elevating liver glycogen contents, and reducing lactic acid contents), antioxidative(enhancing superoxide dismutase(SOD), GSH-Px, and catalase(CAT) activities and reducing malondialdehyde(MDA) content), and immunoregulatory(raising the immune-organ index and promoting T-lymphocyte proliferation and s Ig A secretion in the intestinal tract) effects. This research indicates that MWHPs have potential applications in health care and may be developed as a base for new functional foods.
基金The authors thank the National Natural Science Foundation of China(No.39870415)the Ministry of Science and Technology of China,the Education Ministry of China and Tsinghua University for financial suport.
文摘It was found that phosphorylation of small peptide could improve the sensitivity in mass spectrometry. Density functional theory calculations showed that the energy for the protonation of N-(O,O'-dimethyl) phosphoryl glycylglycine is lower than that of glycylglycine. These could help to understanding the experimental results.
基金supported by the National Natural Science Foundation of China(32272319,31972020,32202032)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in the neuroprotection mechanism remains to be elucidated.In this study,RNA-sequencing and miRNA-sequencing were used to independently identify differentially expressed mRNAs and small RNAs profiles in Pb^(2+)-treated primary fetal rat cortical neurons and then the correlated miRNA-mRNA target pairs were obtained.It was found that 34 mRNAs related to oxidative phosphorylation could be reversed by pretreatment of TSeMMM and SeMDPGQQ.The protective effect of TSeMMM and SeMDPGQQ was mediated by upregulation of miR-107-3p,which downregulates the ATPase H+transporting V0 subunit e1(Atp6v0e1)mRNA level.A zebrafish model was applied to verify the relevance between the targeted mRNA and miRNA by real-time quantitative PCR.The results indicated that miR-107-3p was a potential therapeutic target to achieve neuroprotection of Se-containing peptides via stimulation of Atp6v0e1.
基金supported by the National Key Research and Development Program of China (2021YFD2100402)the National Natural Science Foundation of China (81903275)the Fund of the Cultivation Project of Double First-Class Disciplines of Food Science and Engineering,Beijing Technology&Business University (BTBUYXTD202203)。
文摘Globally,the prevalence of anxiety and depression has reached epidemic proportions.Food-derived protein hydrolysates and peptides delivered through dietary supplementation can avoid the negative risks associated with traditional pharmaceuticals while delivering superior anxiolytic and antidepressant effects.This review summarizes current research on food-derived anxiolytic and antidepressant protein hydrolysates and peptides,and subsequently analyses their physicochemical characteristics and elaborates on their mechanisms.The aim of this work is to contribute to the in-depth study and provide a theoretical foundation for the development of related products to better serve patients with anxiety and depression.