In this paper we try to introduce the ladder operators associated with the pseudoharmonic oscillator, after solving the corresponding Schrrdinger equation by using the factorization method. The obtained generalized ra...In this paper we try to introduce the ladder operators associated with the pseudoharmonic oscillator, after solving the corresponding Schrrdinger equation by using the factorization method. The obtained generalized raising and lowering operators naturally lead us to the Dirac representation space of the system which is much easier to work with, in comparison to the functional Hilbert space. The SU(1, 1) dynamical symmetry group associated with the considered system is exactly established through investigating the fact that the deduced operators satisfy appropriate commutation relations. This result enables us to construct two important and distinct classes of Barut-Girardello and Gilmore-Perelomov coherent states associated with the system. Finally, their identities as the most important task are exactly resolved and some of their nonclassical properties are illustrated, numerically.展开更多
文摘In this paper we try to introduce the ladder operators associated with the pseudoharmonic oscillator, after solving the corresponding Schrrdinger equation by using the factorization method. The obtained generalized raising and lowering operators naturally lead us to the Dirac representation space of the system which is much easier to work with, in comparison to the functional Hilbert space. The SU(1, 1) dynamical symmetry group associated with the considered system is exactly established through investigating the fact that the deduced operators satisfy appropriate commutation relations. This result enables us to construct two important and distinct classes of Barut-Girardello and Gilmore-Perelomov coherent states associated with the system. Finally, their identities as the most important task are exactly resolved and some of their nonclassical properties are illustrated, numerically.