Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed t...Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed to systematically investigate the influence of perforation parameters, such as perforation density, perforation orientation, perforation diameter, and perforation length as well as wellbore ellipticity, in vertical wells on the formation fracturing pressure. Based on a six-month simulation research in the University of Petroleum, China, several conclusions are drawn for the first time. Perforation density and perforation orientation angle are the most important parameters controlling the formation fracturing pressure. As the perforation density increases, the fracturing pressure decreases, not linearly but progressively. The fracturing pressure increases with the perforation orientation angle only when the angle is less than 45 degrees, and the relationship becomes very flat when the angle is 45 degrees. However, with regards to the perforation diameter and perforation length, their influences are much slighter. The wellbore ellipticity has a significant effect on the formation fracturing pressure. It is obvious that fracturing pressure increases linearly with the ellipticity of the wellbore.展开更多
Horizontal wells show better affect and higher success rate in low water ratio cement,complex fracture zone,crevice and heavy oil blocks,it is the main measures to expand control area of a single well.Hydraulic fractu...Horizontal wells show better affect and higher success rate in low water ratio cement,complex fracture zone,crevice and heavy oil blocks,it is the main measures to expand control area of a single well.Hydraulic fracturing technology is the most financial way to improve the penetration of the reservoir to increase the production.However,compare with the vertical wells,the fracture of Horizontal wells are more complex,and lead to the initiation crack pressure is much higher than vertical wells.In this paper,defined the crack judging basis,and established the finite element model which could compute the initial crack pressure,to research the affection mechanism of perforation azimuth angle,density,diameter and depth,to provide references of perforation project's design and optimize.The research of this paper has significances on further understanding the affection mechanism of perforation parameters.展开更多
文摘Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed to systematically investigate the influence of perforation parameters, such as perforation density, perforation orientation, perforation diameter, and perforation length as well as wellbore ellipticity, in vertical wells on the formation fracturing pressure. Based on a six-month simulation research in the University of Petroleum, China, several conclusions are drawn for the first time. Perforation density and perforation orientation angle are the most important parameters controlling the formation fracturing pressure. As the perforation density increases, the fracturing pressure decreases, not linearly but progressively. The fracturing pressure increases with the perforation orientation angle only when the angle is less than 45 degrees, and the relationship becomes very flat when the angle is 45 degrees. However, with regards to the perforation diameter and perforation length, their influences are much slighter. The wellbore ellipticity has a significant effect on the formation fracturing pressure. It is obvious that fracturing pressure increases linearly with the ellipticity of the wellbore.
基金This research is supported by the Natural Science Fund for Outstanding Youth Science Fund(Grant No.51222406)New Century Excellent Talents in University of China(NCET-12-1061)+2 种基金Scientific Research Innovation Team Project of Sichuan Colleges and Universities(12TD007)the key projects of academic and technical leaders cultivate fund in Sichuan Province,China(2011-441-zxh)Sichuan Science and Technology Innovation Talent Project(20132057).
文摘Horizontal wells show better affect and higher success rate in low water ratio cement,complex fracture zone,crevice and heavy oil blocks,it is the main measures to expand control area of a single well.Hydraulic fracturing technology is the most financial way to improve the penetration of the reservoir to increase the production.However,compare with the vertical wells,the fracture of Horizontal wells are more complex,and lead to the initiation crack pressure is much higher than vertical wells.In this paper,defined the crack judging basis,and established the finite element model which could compute the initial crack pressure,to research the affection mechanism of perforation azimuth angle,density,diameter and depth,to provide references of perforation project's design and optimize.The research of this paper has significances on further understanding the affection mechanism of perforation parameters.