Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted wavef...Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted waveform.It is based on Kullback-Leibler Information Number of single observation(KLINs),which measures the dissimilarity between targets depicted by a range-velocity double spread density function in frequency domain.We considered two signal models which are different in the coherence of the observations.The method we proposed takes advantage of the methodology of sequential hypothesis test,and then the recognition performance in terms of correct classification rate is expressed by Receiver Operating Characteristic(ROC).Simulation results about the parameters of LFM signal show the validity of the method.展开更多
In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purpos...In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purposes by applying three methods: the support vector machine (SVM) model, the radial basis function neural network (RBFNN) model and the multinomial logit (MNL) model. The effect of explanatory factors on trip chaining behaviors and their contribution to model performace were investigated by sensitivity analysis. Results show that the SVM model has a better performance than the RBFNN model and the MNL model due to its higher overall and partial accuracy, indicating its recognition advantage under a smai sample size scenario. It is also proved that the SVM model is capable of estimating the effect of multi-category factors on trip chaining behaviors more accurately. The different contribution of explanatory, factors to trip chaining pattern recognition reflects the importance of refining trip chaining patterns ad exploring factors that are specific to each pattern. It is shown that the SVM technology in travel demand forecast modeling and analysis of explanatory variable effects is practical.展开更多
This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition ...This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods.展开更多
Fusion of multiple instances within a modality for biometric verification performance improvement has received considerable attention. In this letter, we present an iris recognition method based on multiinstance fusio...Fusion of multiple instances within a modality for biometric verification performance improvement has received considerable attention. In this letter, we present an iris recognition method based on multiinstance fusion, which combines the left and right irises of an individual at the matching score level. When fusing, a novel fusion strategy using minimax probability machine (MPM) is applied to generate a fused score for the final decision. The experimental results on CASIA and UBIRIS databases show that the proposed method can bring obvious performance improvement compared with the single-instance method. The comparison among different fusion strategies demonstrates the superiority of the fusion strategy based on MPM.展开更多
文摘Target recognition performance can be affected by radar waveform parameters.In this paper,we established rigorous relationship between target recognition efficiency and the parameters of a repeatedly transmitted waveform.It is based on Kullback-Leibler Information Number of single observation(KLINs),which measures the dissimilarity between targets depicted by a range-velocity double spread density function in frequency domain.We considered two signal models which are different in the coherence of the observations.The method we proposed takes advantage of the methodology of sequential hypothesis test,and then the recognition performance in terms of correct classification rate is expressed by Receiver Operating Characteristic(ROC).Simulation results about the parameters of LFM signal show the validity of the method.
基金The Fundamental Research Funds for the Central Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0177)
文摘In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purposes by applying three methods: the support vector machine (SVM) model, the radial basis function neural network (RBFNN) model and the multinomial logit (MNL) model. The effect of explanatory factors on trip chaining behaviors and their contribution to model performace were investigated by sensitivity analysis. Results show that the SVM model has a better performance than the RBFNN model and the MNL model due to its higher overall and partial accuracy, indicating its recognition advantage under a smai sample size scenario. It is also proved that the SVM model is capable of estimating the effect of multi-category factors on trip chaining behaviors more accurately. The different contribution of explanatory, factors to trip chaining pattern recognition reflects the importance of refining trip chaining patterns ad exploring factors that are specific to each pattern. It is shown that the SVM technology in travel demand forecast modeling and analysis of explanatory variable effects is practical.
基金supported by the National Natural Science Foundation of China(61101179)
文摘This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods.
基金supported by the PhD Programs Foundation of Ministry of Education of China (No.20050698025)the National Natural Science Foundation of China (No.60602025).
文摘Fusion of multiple instances within a modality for biometric verification performance improvement has received considerable attention. In this letter, we present an iris recognition method based on multiinstance fusion, which combines the left and right irises of an individual at the matching score level. When fusing, a novel fusion strategy using minimax probability machine (MPM) is applied to generate a fused score for the final decision. The experimental results on CASIA and UBIRIS databases show that the proposed method can bring obvious performance improvement compared with the single-instance method. The comparison among different fusion strategies demonstrates the superiority of the fusion strategy based on MPM.