For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
This study experimentally explored the fine structures of the successive period-doubling bifurcations of the time-dependent thermocapillary convection in a floating half zone of 10 cSt silicone oil with the diameter d...This study experimentally explored the fine structures of the successive period-doubling bifurcations of the time-dependent thermocapillary convection in a floating half zone of 10 cSt silicone oil with the diameter d0=3.00 mm and the aspect ratio A=l/d0=0.72 in terrestrial conditions.The onset of time-dependent thermocapillary convection predominated in this experimental configuration and its subsequent evolution were experimentally detected through the local temperature measurements.The experimental results revealed a sequence of period-doubling bifurcations of the time-dependent thermocapillary convection,similar in some way to one of the routes to chaos for buoyant natural convection.The critical frequencies and the corresponding fractal frequencies were extracted through the real-time analysis of the frequency spectra by Fast-Fourier-Transfor-mation(FFT).The projections of the trajectory onto the reconstructed phase-space were also provided.Furthermore,the experimentally predicted Feigenbaum constants were quite close to the theoretical asymptotic value of 4.669 [Feigenbaum M J.Phys Lett A,1979,74:375-378].展开更多
Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt...Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt.The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES).In this paper,the Burgers model is assumed for the viscoelasticity in an NES,and a linear oscillator system is considered for investigating the instabilities and bifurcations.The equations of motion of the coupled system are solved by using the harmonic balance and pseudo-arc-length continuation methods.The results show that the viscoelasticity affects the frequency intervals of the Hopf and saddle-node branches,and by increasing the stiffness parameters of the viscoelasticity,the conditions of these branches occur in larger ranges of the external force amplitudes,and also reduce the frequency range of the branches.In addition,increasing the viscoelastic damping parameter has the potential to completely eliminate the instability of the system and gradually reduce the amplitude of the jump phenomenon.展开更多
In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correcti...In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.展开更多
In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter...In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.展开更多
Seizures are caused by increased neuronal firing activity resulting from reduced inhibitory effect and enhancement of inhibitory modulation to suppress this activity is used as a therapeutic tool.However,recent experi...Seizures are caused by increased neuronal firing activity resulting from reduced inhibitory effect and enhancement of inhibitory modulation to suppress this activity is used as a therapeutic tool.However,recent experiments have shown a counterintuitive phenomenon that inhibitory modulation does not suppress but elicit post-inhibitory rebound(PIR)spike along with seizure to challenge the therapeutic tool.The nonlinear mechanism to avoid the PIR spike can present theoretical guidance to seizure treatment.This paper focuses on identifying credible bifurcations that underlie PIR spike by modulating multiple parameters in multiple theoretical models.The study identifies a codimension-2 bifurcation called saddle-node homoclinic orbit(SNHOB),which is an intersection between saddle node bifurcation on invariant cycle(SNIC)and other two bifurcations.PIR spike cannot be evoked for the SNIC far from the SNHOBbut induced for the SNIC close to the SNHOB,which extends the bifurcation condition for PIR spike from the well-known Hopf to SNIC.Especially,in a thalamic neuron model,increases of conductance of T-type Ca^(2+)(TC a)channel induce SNIC bifurcation approaching to the SNHOB to elicit PIR spikes,closely matching experimental results of the absence seizure or Parkinson diseases.Such results imply that,when inhibition is employed to relieve absence seizure and Parkinson diseases related to PIR spike,modulating SNIC to get far from the SNHOBto avoid PIR spike is the principle.The study also addresses the complex roles of TCacurrent and comprehensive relationships between PIR spike and nonlinear conceptions such as bifurcation types and shapes of threshold curve.展开更多
Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing sys...Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.展开更多
In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems ...In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.展开更多
Background: Bifurcation lesions pose a high risk for adverse events after percutaneous coronary intervention (PCI). Evidence supporting the benefits of the two-stent strategy (2SS) for treating coronary bifurcation le...Background: Bifurcation lesions pose a high risk for adverse events after percutaneous coronary intervention (PCI). Evidence supporting the benefits of the two-stent strategy (2SS) for treating coronary bifurcation lesions in India is limited. This study aimed to evaluate the clinical outcomes of various 2SSs for percutaneous transluminal coronary angioplasty for bifurcation lesions in India. Materials and Methods: This retrospective, observational, multicentric, real-world study included 64 patients over 8 years. Data on demographics, medical history, PCI procedures, and outcomes were recorded. Descriptive statistics were computed using the SPSS software. Results: Patients (n = 64) had an average age of 65.3 ± 11.1 years, with 78.1% males. Acute coronary syndrome was reported in 18.8%, chronic stable angina in 40.6%, and unstable angina in 34.4% of participants. Two-vessel disease was observed in 98.4% of patients, and 99.4% had true bifurcation lesions. The commonly involved vessels were the left anterior descending artery (50%), left circumflex coronary artery (34.4%), and first diagonal artery (43.8%). Mean percent diameter stenosis was 87.2% ± 10.1%. The mean number of stents used was 2.00 ± 0.34. The 2SS techniques included the T and small protrusion (TAP) (39.1%), double kissing (DK) crush (18.8%), and the culotte techniques (14.1%). Procedural and angiographic success rate was 92.18%. Major adverse cardiovascular events at 1-year follow-up occurred in 7.8% of cases. Conclusion: The 2SS for bifurcation lesions showed favorable in-hospital and follow-up outcomes. Findings can serve as a resource for bifurcation angioplasty in India. Larger real-world studies with robust methodology are needed to validate these results.展开更多
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.展开更多
Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizin...Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizing computational fluid dynamics as a tool for analysis.Methods:In line with the designated inclusion criteria,this study covered 160 aneurysms identified in 131 patients who received treatment at Union Hospital of Tongji Medical College,Huazhong University of Science and Technology,China,from January 2021 to September 2022.Utilizing follow-up digital subtraction angiography(DSA)data,these cases were classified into two distinct groups:the sidewall aneurysm group and the bifurcation aneurysm group.Morphological and hemodynamic parameters in the immediate preoperative period were meticulously calculated and examined in both groups using a three-dimensional DSA reconstruction model.Results:No significant differences were found in the morphological or hemodynamic parameters of bifurcation aneurysms at varied locations within the anterior circulation.However,pronounced differences were identified between sidewall and bifurcation aneurysms in terms of morphological parameters such as the diameter of the parent vessel(Dvessel),inflow angle(θF),and size ratio(SR),as well as the hemodynamic parameter of inflow concentration index(ICI)(P<0.001).Notably,only the SR exhibited a significant correlation with multiple hemodynamic parameters(P<0.001),while the ICI was closely related to several morphological parameters(R>0.5,P<0.001).Conclusions:The significant differences in certain morphological and hemodynamic parameters between sidewall and bifurcation aneurysms emphasize the importance to contemplate variances in threshold values for these parameters when evaluating the risk of rupture in anterior circulation aneurysms.Whether it is a bifurcation or sidewall aneurysm,these disparities should be considered.The morphological parameter SR has the potential to be a valuable clinical tool for promptly distinguishing the distinct rupture risks associated with sidewall and bifurcation aneurysms.展开更多
The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifur...The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models.Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions.To elucidate the idea,we apply this analytical approach to three representative phase field equations:the Allen-Cahn equation,the Cahn-Hilliard equation,and the Allen-Cahn-Ohta-Kawasaki system.The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method.展开更多
This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bis...This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.展开更多
In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(...In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(OPA)method,the nonlinear damping and stiffness are expanded into the linear combination of the state variable.The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of themean value.Afterwards,the stochastic vibro-impact systemcan be turned into an equivalent high-dimensional deterministic non-smooth system.Two different Poincarésections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response.Consequently,the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system.Furthermore,the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system.It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation.Increasing the randomintensitymay result in a diffusion-based trajectory and the impact with the constraint plane,which induces the topological behavior of the non-smooth system to change drastically.It is also found that grazing bifurcation appears in advance with increasing of the random intensity.The stronger impulse force can result in the appearance of the diffusion phenomenon.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equiva...This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.展开更多
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model...During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.展开更多
The bifurcation of a periodic solution for a delay differential equation related to optical bistability has been discussed analytically.Using the theory of retarded functional differential equations,we have proved tha...The bifurcation of a periodic solution for a delay differential equation related to optical bistability has been discussed analytically.Using the theory of retarded functional differential equations,we have proved that it follows precisely the period-doubling route.展开更多
In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term....In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.展开更多
The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the...The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the continuation of the bifurcating periodical solution starting from Hopf point is exploited. The generalized Hopf point is tracked by seeking for the critical value of free parameter of the switching phenomena of the open loop, which describes the lineup of bifurcating periodical solutions from Hopf point. The normal form near the generalized Hopf point is computed by Lyapunov-Schimdt reduction scheme combined with the center manifold analytical technique. The near dynamics is classified by geometrically different topological phase portraits.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No KJCX2-YW-L08)
文摘This study experimentally explored the fine structures of the successive period-doubling bifurcations of the time-dependent thermocapillary convection in a floating half zone of 10 cSt silicone oil with the diameter d0=3.00 mm and the aspect ratio A=l/d0=0.72 in terrestrial conditions.The onset of time-dependent thermocapillary convection predominated in this experimental configuration and its subsequent evolution were experimentally detected through the local temperature measurements.The experimental results revealed a sequence of period-doubling bifurcations of the time-dependent thermocapillary convection,similar in some way to one of the routes to chaos for buoyant natural convection.The critical frequencies and the corresponding fractal frequencies were extracted through the real-time analysis of the frequency spectra by Fast-Fourier-Transfor-mation(FFT).The projections of the trajectory onto the reconstructed phase-space were also provided.Furthermore,the experimentally predicted Feigenbaum constants were quite close to the theoretical asymptotic value of 4.669 [Feigenbaum M J.Phys Lett A,1979,74:375-378].
基金financial support from K.N.Toosi University of Technology,Tehran,Iran。
文摘Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt.The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES).In this paper,the Burgers model is assumed for the viscoelasticity in an NES,and a linear oscillator system is considered for investigating the instabilities and bifurcations.The equations of motion of the coupled system are solved by using the harmonic balance and pseudo-arc-length continuation methods.The results show that the viscoelasticity affects the frequency intervals of the Hopf and saddle-node branches,and by increasing the stiffness parameters of the viscoelasticity,the conditions of these branches occur in larger ranges of the external force amplitudes,and also reduce the frequency range of the branches.In addition,increasing the viscoelastic damping parameter has the potential to completely eliminate the instability of the system and gradually reduce the amplitude of the jump phenomenon.
基金supported by the National Natural Science Foundation of China (Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100201120028)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No.EIPE10303)
文摘In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
基金Project supported by the Major Program of the National Natural Science Foundation of China, China (Grant No 10332030), the National Natural Science Foundation of China (Grant No 10472091), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655).
文摘In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.
基金the National Natural Science Foundation of China(Grant Nos.12072236,11872276,and11802086)the Postdoctoral Research Project of Henan Province,China(Grant No.19030095)the Science and Technology Development Program of Henan Province,China(Grant No.212102210543)。
文摘Seizures are caused by increased neuronal firing activity resulting from reduced inhibitory effect and enhancement of inhibitory modulation to suppress this activity is used as a therapeutic tool.However,recent experiments have shown a counterintuitive phenomenon that inhibitory modulation does not suppress but elicit post-inhibitory rebound(PIR)spike along with seizure to challenge the therapeutic tool.The nonlinear mechanism to avoid the PIR spike can present theoretical guidance to seizure treatment.This paper focuses on identifying credible bifurcations that underlie PIR spike by modulating multiple parameters in multiple theoretical models.The study identifies a codimension-2 bifurcation called saddle-node homoclinic orbit(SNHOB),which is an intersection between saddle node bifurcation on invariant cycle(SNIC)and other two bifurcations.PIR spike cannot be evoked for the SNIC far from the SNHOBbut induced for the SNIC close to the SNHOB,which extends the bifurcation condition for PIR spike from the well-known Hopf to SNIC.Especially,in a thalamic neuron model,increases of conductance of T-type Ca^(2+)(TC a)channel induce SNIC bifurcation approaching to the SNHOB to elicit PIR spikes,closely matching experimental results of the absence seizure or Parkinson diseases.Such results imply that,when inhibition is employed to relieve absence seizure and Parkinson diseases related to PIR spike,modulating SNIC to get far from the SNHOBto avoid PIR spike is the principle.The study also addresses the complex roles of TCacurrent and comprehensive relationships between PIR spike and nonlinear conceptions such as bifurcation types and shapes of threshold curve.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10472091and10332030)
文摘Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.
基金Project supported by the National Natural Science Foundation of China(Grant No.72361031)the Gansu Province University Youth Doctoral Support Project(Grant No.2023QB-049)。
文摘In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.
文摘Background: Bifurcation lesions pose a high risk for adverse events after percutaneous coronary intervention (PCI). Evidence supporting the benefits of the two-stent strategy (2SS) for treating coronary bifurcation lesions in India is limited. This study aimed to evaluate the clinical outcomes of various 2SSs for percutaneous transluminal coronary angioplasty for bifurcation lesions in India. Materials and Methods: This retrospective, observational, multicentric, real-world study included 64 patients over 8 years. Data on demographics, medical history, PCI procedures, and outcomes were recorded. Descriptive statistics were computed using the SPSS software. Results: Patients (n = 64) had an average age of 65.3 ± 11.1 years, with 78.1% males. Acute coronary syndrome was reported in 18.8%, chronic stable angina in 40.6%, and unstable angina in 34.4% of participants. Two-vessel disease was observed in 98.4% of patients, and 99.4% had true bifurcation lesions. The commonly involved vessels were the left anterior descending artery (50%), left circumflex coronary artery (34.4%), and first diagonal artery (43.8%). Mean percent diameter stenosis was 87.2% ± 10.1%. The mean number of stents used was 2.00 ± 0.34. The 2SS techniques included the T and small protrusion (TAP) (39.1%), double kissing (DK) crush (18.8%), and the culotte techniques (14.1%). Procedural and angiographic success rate was 92.18%. Major adverse cardiovascular events at 1-year follow-up occurred in 7.8% of cases. Conclusion: The 2SS for bifurcation lesions showed favorable in-hospital and follow-up outcomes. Findings can serve as a resource for bifurcation angioplasty in India. Larger real-world studies with robust methodology are needed to validate these results.
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.
文摘Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizing computational fluid dynamics as a tool for analysis.Methods:In line with the designated inclusion criteria,this study covered 160 aneurysms identified in 131 patients who received treatment at Union Hospital of Tongji Medical College,Huazhong University of Science and Technology,China,from January 2021 to September 2022.Utilizing follow-up digital subtraction angiography(DSA)data,these cases were classified into two distinct groups:the sidewall aneurysm group and the bifurcation aneurysm group.Morphological and hemodynamic parameters in the immediate preoperative period were meticulously calculated and examined in both groups using a three-dimensional DSA reconstruction model.Results:No significant differences were found in the morphological or hemodynamic parameters of bifurcation aneurysms at varied locations within the anterior circulation.However,pronounced differences were identified between sidewall and bifurcation aneurysms in terms of morphological parameters such as the diameter of the parent vessel(Dvessel),inflow angle(θF),and size ratio(SR),as well as the hemodynamic parameter of inflow concentration index(ICI)(P<0.001).Notably,only the SR exhibited a significant correlation with multiple hemodynamic parameters(P<0.001),while the ICI was closely related to several morphological parameters(R>0.5,P<0.001).Conclusions:The significant differences in certain morphological and hemodynamic parameters between sidewall and bifurcation aneurysms emphasize the importance to contemplate variances in threshold values for these parameters when evaluating the risk of rupture in anterior circulation aneurysms.Whether it is a bifurcation or sidewall aneurysm,these disparities should be considered.The morphological parameter SR has the potential to be a valuable clinical tool for promptly distinguishing the distinct rupture risks associated with sidewall and bifurcation aneurysms.
基金supported as part of the Computational Materials Sciences Program funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences,under Award No.DE-SC0020145Y.Z.would like to acknowledge support for his effort by the Simons Foundation through Grant No.357963 and NSF grant DMS-2142500.
文摘The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models.Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions.To elucidate the idea,we apply this analytical approach to three representative phase field equations:the Allen-Cahn equation,the Cahn-Hilliard equation,and the Allen-Cahn-Ohta-Kawasaki system.The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072262)the Shaanxi Computer Society&Xiangteng Company Foundation.
文摘This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12172266,12272283)the Bilateral Governmental Personnel Exchange Project between China and Slovenia for the Years 2021-2023(Grant No.12)+2 种基金Slovenian Research Agency ARRS in Frame of Bilateral Project(Grant No.P2-0137)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23004)Joint University Education Project between China and East European(Grant No.2021122).
文摘In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(OPA)method,the nonlinear damping and stiffness are expanded into the linear combination of the state variable.The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of themean value.Afterwards,the stochastic vibro-impact systemcan be turned into an equivalent high-dimensional deterministic non-smooth system.Two different Poincarésections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response.Consequently,the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system.Furthermore,the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system.It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation.Increasing the randomintensitymay result in a diffusion-based trajectory and the impact with the constraint plane,which induces the topological behavior of the non-smooth system to change drastically.It is also found that grazing bifurcation appears in advance with increasing of the random intensity.The stronger impulse force can result in the appearance of the diffusion phenomenon.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.
基金National Natural Science Foundation of China(Nos.51767017,51867015,62063016)Fundamental Research Innovation Group Project of Gansu Province(18JR3RA133)Gansu Provincial Science and Technology Program(20JR5RA048,20JR10RA177).
文摘During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.
文摘The bifurcation of a periodic solution for a delay differential equation related to optical bistability has been discussed analytically.Using the theory of retarded functional differential equations,we have proved that it follows precisely the period-doubling route.
文摘In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.
文摘The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the continuation of the bifurcating periodical solution starting from Hopf point is exploited. The generalized Hopf point is tracked by seeking for the critical value of free parameter of the switching phenomena of the open loop, which describes the lineup of bifurcating periodical solutions from Hopf point. The normal form near the generalized Hopf point is computed by Lyapunov-Schimdt reduction scheme combined with the center manifold analytical technique. The near dynamics is classified by geometrically different topological phase portraits.