In this paper. a new kind of generalized BBM equation is introduced and discussed Some existence theorems of periodic traveling wave solutions for this kind generalized BBM equation are given.
By using the theory of planar dynamical systems to the ion acoustic plasma equations, we obtain the existence of the solutions of the smooth and non-smooth solitary waves and the uncountably infinite smooth and non-sm...By using the theory of planar dynamical systems to the ion acoustic plasma equations, we obtain the existence of the solutions of the smooth and non-smooth solitary waves and the uncountably infinite smooth and non-smooth periodic waves. Under the given parametric conditions, we present the sufficient conditions to guarantee the existence of the above solutions.展开更多
In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under d...In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given.Some exact explicit parametric representations of the above travelling solutions are obtained.展开更多
By using the theory of bifurcations of planar dynamic systems to the coupled Jaulent-Miodek equations, the existence of smooth solitary travelling wave solutions and uncountably infinite many smooth periodic travellin...By using the theory of bifurcations of planar dynamic systems to the coupled Jaulent-Miodek equations, the existence of smooth solitary travelling wave solutions and uncountably infinite many smooth periodic travelling wave solutions is studied and the bifurcation parametric sets are shown. Under the given parametric conditions, all possible representations of explicit exact solitary wave solutions and periodic wave solutions are obtained.展开更多
Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the a...Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the availability of symbolic computation. These solutions include the Jacobi elliptic function solutions, hyperbolic function solutions, rational solutions, and periodic wave solutions. In the limiting cases, the solitary wave solutions are obtained and some known solutions are also recovered.展开更多
We study the periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation, Some theorems concerning the boundness, existence and uniqueness of solutions are proved,
By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric spa...By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.展开更多
文摘In this paper. a new kind of generalized BBM equation is introduced and discussed Some existence theorems of periodic traveling wave solutions for this kind generalized BBM equation are given.
基金supported by the National Natural Science Foundation of China (No. 10971085)
文摘By using the theory of planar dynamical systems to the ion acoustic plasma equations, we obtain the existence of the solutions of the smooth and non-smooth solitary waves and the uncountably infinite smooth and non-smooth periodic waves. Under the given parametric conditions, we present the sufficient conditions to guarantee the existence of the above solutions.
基金Supported by the NNSF of China(60464001) Guangxi Science Foundation(0575092).
文摘In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given.Some exact explicit parametric representations of the above travelling solutions are obtained.
文摘By using the theory of bifurcations of planar dynamic systems to the coupled Jaulent-Miodek equations, the existence of smooth solitary travelling wave solutions and uncountably infinite many smooth periodic travelling wave solutions is studied and the bifurcation parametric sets are shown. Under the given parametric conditions, all possible representations of explicit exact solitary wave solutions and periodic wave solutions are obtained.
文摘Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the availability of symbolic computation. These solutions include the Jacobi elliptic function solutions, hyperbolic function solutions, rational solutions, and periodic wave solutions. In the limiting cases, the solitary wave solutions are obtained and some known solutions are also recovered.
文摘We study the periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation, Some theorems concerning the boundness, existence and uniqueness of solutions are proved,
文摘By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.