Periodontitis is an inflammatory autoimmune disease. Treatment should alleviate inflammation, regulate the immune reaction and promote periodontal tissue regeneration. Icariin is the main active ingredient of Epimedii...Periodontitis is an inflammatory autoimmune disease. Treatment should alleviate inflammation, regulate the immune reaction and promote periodontal tissue regeneration. Icariin is the main active ingredient of Epimedii Folium, and it is a promising compound for the enhancement of mesenchymal stem cell function, promotion of bone formation, inhibition of bone resorption, alleviation of inflammation and regulation of immunity. The study investigated the effect of icariin on periodontal tissue regeneration in a minipig model of periodontitis. The minipig model of periodontitis was established. Icariin was injected locally. The periodontal clinical assessment index, a computed tomography(CT) scan, histopathology and enzyme-linked immune sorbent assay(ELISA)were used to evaluate the effects of icariin. Quantitative analysis results 12 weeks post-injection demonstrated that probing depth,gingival recession, attachment loss and alveolar bone regeneration values were(3.72 ± 1.18) mm vs.(6.56 ± 1.47) mm,(1.67 ± 0.59)mm vs.(2.38 ± 0.61) mm,(5.56 ± 1.29) mm vs.(8.61 ± 1.72) mm, and(25.65 ± 5.13) mm3 vs.(9.48 ± 1.78) mm3 in the icariin group and0.9% NaCl group, respectively. The clinical assessment, CT scan, and histopathology results demonstrated significant enhancement of periodontal tissue regeneration in the icariin group compared to the 0.9% NaCl group. The ELISA results suggested that the concentration of interleukin-1 beta(IL-1β) in the icariin group was downregulated compared to the 0.9% NaCl group, which indicates that local injection of icariin relieved local inflammation in a minipig model of periodontitis. Local injection of icariin promoted periodontal tissue regeneration and exerted anti-inflammatory and immunomodulatory function. These results support the application of icariin for the clinical treatment of periodontitis.展开更多
Periodontal disease is a chronic infectious disease of the oral cavity.Its main clinical features are periodontal pocket formation and alveolar bone resorption.Scholars'research hotspot is to achieve periodontal t...Periodontal disease is a chronic infectious disease of the oral cavity.Its main clinical features are periodontal pocket formation and alveolar bone resorption.Scholars'research hotspot is to achieve periodontal tissue regeneration in patients.Studies have found that strontium has certain potential in promoting periodontal tissue regeneration.In recent years,scholars have been conducting research on strontium and periodontal tissue regeneration,with a view to opening a new path for periodontal disease treatment.This article reviews the research status of strontium and periodontal tissue regeneration.The review results show that strontium can induce the proliferation and differentiation of PDLSCs and promote the regeneration of lost bone tissue;it can inhibit osteoclast activity and induce osteoclast apoptosis through a variety of signaling pathways,thereby inhibiting bone resorption;Promote bone formation;Strontium also has the function of promoting early angiogenesis and suppressing immune inflammatory response.Because the current research on strontium and periodontal tissue regeneration is only focused on in vivo and in vitro experiments,there is no relevant clinical trial to apply strontium to periodontal tissue regeneration.Therefore,if strontium is used to promote periodontal tissue regeneration to achieve the treatment of periodontal disease,further research is needed.展开更多
The coupled process of osteogenesis-angiogenesis plays a crucial role in periodontal tissue regeneration.Although various cytokines or chemokines have been widely applied in periodontal in situ tissue engineering,most...The coupled process of osteogenesis-angiogenesis plays a crucial role in periodontal tissue regeneration.Although various cytokines or chemokines have been widely applied in periodontal in situ tissue engineering,most of them are macromolecular proteins with the drawbacks of short effective half-life,poor stability and high cost,which constrain their clinical translation.Our study aimed to develop a difunctional structure for periodontal tissue regeneration by incorporating an angiogenic small molecule,dimethyloxalylglycine(DMOG),and an osteoinductive inorganic nanomaterial,nanosilicate(nSi)into poly(lactic-co-glycolic acid)(PLGA)fibers by electrospinning.The physiochemical properties of DMOG/nSi-PLGA fibrous membranes were characterized.Thereafter,the effect of DMOG/nSi-PLGA membranes on periodontal tissue regeneration was evaluated by detecting osteogenic and angiogenic differentiation potential of periodontal ligament stem cells(PDLSCs)in vitro.Additionally,the fibrous membranes were transplanted into rat periodontal defects,and tissue regeneration was assessed with histological evaluation,micro-computed tomography(micro-CT),and immunohistochemical analysis.DMOG/nSi-PLGA membranes possessed preferable mechanical property and biocompatibility.PDLSCs seeded on the DMOG/nSi-PLGA membranes showed up-regulated expression of osteogenic and angiogenic markers,higher alkaline phosphatase(ALP)activity,and more tube formation in comparison with single application.Further,in vivo study showed that the DMOG/nSi-PLGA membranes promoted recruitment of CD90+/CD34stromal cells,induced angiogenesis and osteogenesis,and regenerated cementum-ligament-bone complex in periodontal defects.Consequently,the combination of DMOG and nSi exerted admirable effects on periodontal tissue regeneration.DMOG/nSi-PLGA fibrous membranes could enhance and orchestrate osteogenesis-angiogenesis,and may have the potential to be translated as an effective scaffold in periodontal tissue engineering.展开更多
In an effort to develop biomaterials to meet guided tissue regeneration (GTR) standards for periodontal tissue recovery, a homogeneous and transparent chitosan (CS)/hydroxyapatite (HA) membrane with potential ap...In an effort to develop biomaterials to meet guided tissue regeneration (GTR) standards for periodontal tissue recovery, a homogeneous and transparent chitosan (CS)/hydroxyapatite (HA) membrane with potential applications as GTR barrier in periodontal therapy has been prepared via in situ compositing. The membrane has been designed to have a smoothrough asymmetric structure that meets the demand for GTR. Component and morphology of the membrane are characterized by XRD and SEM. It can be indicated that HA was in situ synthesized uniformly in the CS membrane. Mechanical experiments of the membranes with various HA contents show that their tensile strengths are adequate for periodontal therapy. Biological properties of the membrane have been performed by cell toxicity assays, hemolysis tests and animal experiments. Results indicate that the membrane has good biocompatibility and inductive effect for cell growth. Therefore this membrane can be potentially applied as GTR barrier membrane for periodontal tissue regeneration.展开更多
Objective: To evaluate the effectiveness of regenerous tissue and bone substitute in autogenous tooth transplantation in the larger recipient socket. Methods:In 3 Beagle dogs, 18 incisors were transplanted to the re...Objective: To evaluate the effectiveness of regenerous tissue and bone substitute in autogenous tooth transplantation in the larger recipient socket. Methods:In 3 Beagle dogs, 18 incisors were transplanted to the recipient sockets, 2 mm wider mesio-distally. The regenerous tissue group, the bone substitute group and the control group contained 7, 7 and 4 teeth respectively. No additional material was used in control group. Clinical and radiographic examinations were done every month and were sacrificed 3 months later. Subsequently, decalcified sections were prepared for routine histological evaluation. Ordinal scores for root surface resorption were analyzed using the Kruskal-Wallis test. Results:All donor teeth survived. A statistically significant difference was found among all three treatment groups(P= 0.0001). The proliferating tissue in space positively affected the periodontal healing without any resorption. Inflammatory resorption of the root surface and formation of new bone were observed in the bone substitute group. Surface resorptions of the roots were found in the control group. Conclusion:Proliferating tissues enhance the regeneration of periodontal tissues in larger recipient sockets and prevent root resorption. Sinbone HT is beneficial for the stabilization of the transplanted teeth in larger sockets.展开更多
The purpose of this study was to primarily culture human periodontal ligament cells(hPDLCs)and to reprogram hPDLCs with exogenous genes via a lentivirus-mediated transfection system.Then induced pluripotent stem cells...The purpose of this study was to primarily culture human periodontal ligament cells(hPDLCs)and to reprogram hPDLCs with exogenous genes via a lentivirus-mediated transfection system.Then induced pluripotent stem cells derived from h PDLCs(hPDLC-iPSCs)were identified.Alizarin red staining was used to observe the formation of mineralized nodules and real-time Polymerase Chain Reaction(PCR)was used to detect the expression of osteogenic genes.For the in vivo experiment,nude mouse skull defect models were established and cell sheets were made to repair the bone defect.The reprogrammed cells were positive for alkaline phosphatase(ALP)staining and embryonic stem cells(ESCs)-specific proteins,and could form teratomas.After osteogenic induction,alizarin red staining showed that the number of mineralized nodules in the h PDLC-i PSCs group was more and the osteogenic related factors ALP,osteocalcin(OCN),Col-I and Runx2 were also expressed higher in hPDLC-iPSCs.The hPDLC-iPSC cell sheets were all successfully made.Histological analysis showed that the h PDLC-i PSC cell sheet got new bone formation.These results demonstrated that hPDLC-iPSCs were successfully generated from human periodontal ligament fibroblasts and hPDLC-iPSC cell sheets provided new options for bone tissue engineering.展开更多
Background Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta superfamily, are powerful regulators of cartilage and bone formation. This study investigated the biological changes...Background Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta superfamily, are powerful regulators of cartilage and bone formation. This study investigated the biological changes of NIH3T3 ceils incubated with secretive BMP2 that was induced by gene transfection through transwell.Methods Eukaryonic expression vector (pcDNA3. 1-B2 ) was transfered into NIH333 cells with Sofast^TM, a positive compound transfection agent. The positive cell clones were selected with G418. The cytoplasmic and extracellular expressions of BMP2 were determined by immunohistochemical stain and enzyme-linked immunosorbent assay. NIH333 ceils were co-cultured with hBMP2 gene transfecting ceils through transwell, and the ultrastructure, alkaline phosphatase activity and the expression of osteocalcin (the marker of osteogenetic differentiation) changes were observed.Results There were cytoplasmic and extracellular expressions of BMP2 in transfecting NIH3T3 ceils. The ultrastructural changes, the high activity of alkaline phosphatase and the positive stain of osteocalcin suggested the osteogenetic differentiation tendency of NIH3T3 cells co-cultured with transfecting NIH3T3 cells.Conclusion Secretive BMP2 that is induced by gene transfection could promote the osteogenetic differentiation of fibroblast ceils.展开更多
基金supported by grants from the National Natural Science Foundation of China (grant number 81625005 to Z.F.)High-level Talents of the Beijing Health System (grant number 2014-3-080 to F.Z.)the program for Beijing Science and Technology of Chinese Medicine (grant number JJ2013-11 to F.Z.)
文摘Periodontitis is an inflammatory autoimmune disease. Treatment should alleviate inflammation, regulate the immune reaction and promote periodontal tissue regeneration. Icariin is the main active ingredient of Epimedii Folium, and it is a promising compound for the enhancement of mesenchymal stem cell function, promotion of bone formation, inhibition of bone resorption, alleviation of inflammation and regulation of immunity. The study investigated the effect of icariin on periodontal tissue regeneration in a minipig model of periodontitis. The minipig model of periodontitis was established. Icariin was injected locally. The periodontal clinical assessment index, a computed tomography(CT) scan, histopathology and enzyme-linked immune sorbent assay(ELISA)were used to evaluate the effects of icariin. Quantitative analysis results 12 weeks post-injection demonstrated that probing depth,gingival recession, attachment loss and alveolar bone regeneration values were(3.72 ± 1.18) mm vs.(6.56 ± 1.47) mm,(1.67 ± 0.59)mm vs.(2.38 ± 0.61) mm,(5.56 ± 1.29) mm vs.(8.61 ± 1.72) mm, and(25.65 ± 5.13) mm3 vs.(9.48 ± 1.78) mm3 in the icariin group and0.9% NaCl group, respectively. The clinical assessment, CT scan, and histopathology results demonstrated significant enhancement of periodontal tissue regeneration in the icariin group compared to the 0.9% NaCl group. The ELISA results suggested that the concentration of interleukin-1 beta(IL-1β) in the icariin group was downregulated compared to the 0.9% NaCl group, which indicates that local injection of icariin relieved local inflammation in a minipig model of periodontitis. Local injection of icariin promoted periodontal tissue regeneration and exerted anti-inflammatory and immunomodulatory function. These results support the application of icariin for the clinical treatment of periodontitis.
基金ilin Provincial Science and Technology Development Plan Project(No.20190303183SF)the Undergraduate Teaching Reform Research Project of Jilin University(No.2019XYB318)Natural Science Foundation of Jilin Province(Discipline Layout Project)(No.20200201389JC)。
文摘Periodontal disease is a chronic infectious disease of the oral cavity.Its main clinical features are periodontal pocket formation and alveolar bone resorption.Scholars'research hotspot is to achieve periodontal tissue regeneration in patients.Studies have found that strontium has certain potential in promoting periodontal tissue regeneration.In recent years,scholars have been conducting research on strontium and periodontal tissue regeneration,with a view to opening a new path for periodontal disease treatment.This article reviews the research status of strontium and periodontal tissue regeneration.The review results show that strontium can induce the proliferation and differentiation of PDLSCs and promote the regeneration of lost bone tissue;it can inhibit osteoclast activity and induce osteoclast apoptosis through a variety of signaling pathways,thereby inhibiting bone resorption;Promote bone formation;Strontium also has the function of promoting early angiogenesis and suppressing immune inflammatory response.Because the current research on strontium and periodontal tissue regeneration is only focused on in vivo and in vitro experiments,there is no relevant clinical trial to apply strontium to periodontal tissue regeneration.Therefore,if strontium is used to promote periodontal tissue regeneration to achieve the treatment of periodontal disease,further research is needed.
基金the National Natural Science Foundation of China(No.81670993,81873716,and 81901009)The Construction Engineering Special Fund of“Taishan Scholars”of Shandong Province(No.ts20190975 and tsqn201909180)+1 种基金National Key R&D Program of China(No.2017YFB0405400)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,The National Key Research and Development Program of China(No.2017YFA0104604),Open Foundation of Shandong Provincial Key Laboratory of Oral Tissue Regeneration(No.SDKQ201901,SDKQ201904).The funders had no role in study design,data collection and analysis,decision to publish or preparation of the manuscript.The authors also thank Prof.Hongyu Zhang and Dr.Yi Wang from Tsinghua University for technical guidance.The authors declare that no financial or other potential competing interests exist with regard to this study.
文摘The coupled process of osteogenesis-angiogenesis plays a crucial role in periodontal tissue regeneration.Although various cytokines or chemokines have been widely applied in periodontal in situ tissue engineering,most of them are macromolecular proteins with the drawbacks of short effective half-life,poor stability and high cost,which constrain their clinical translation.Our study aimed to develop a difunctional structure for periodontal tissue regeneration by incorporating an angiogenic small molecule,dimethyloxalylglycine(DMOG),and an osteoinductive inorganic nanomaterial,nanosilicate(nSi)into poly(lactic-co-glycolic acid)(PLGA)fibers by electrospinning.The physiochemical properties of DMOG/nSi-PLGA fibrous membranes were characterized.Thereafter,the effect of DMOG/nSi-PLGA membranes on periodontal tissue regeneration was evaluated by detecting osteogenic and angiogenic differentiation potential of periodontal ligament stem cells(PDLSCs)in vitro.Additionally,the fibrous membranes were transplanted into rat periodontal defects,and tissue regeneration was assessed with histological evaluation,micro-computed tomography(micro-CT),and immunohistochemical analysis.DMOG/nSi-PLGA membranes possessed preferable mechanical property and biocompatibility.PDLSCs seeded on the DMOG/nSi-PLGA membranes showed up-regulated expression of osteogenic and angiogenic markers,higher alkaline phosphatase(ALP)activity,and more tube formation in comparison with single application.Further,in vivo study showed that the DMOG/nSi-PLGA membranes promoted recruitment of CD90+/CD34stromal cells,induced angiogenesis and osteogenesis,and regenerated cementum-ligament-bone complex in periodontal defects.Consequently,the combination of DMOG and nSi exerted admirable effects on periodontal tissue regeneration.DMOG/nSi-PLGA fibrous membranes could enhance and orchestrate osteogenesis-angiogenesis,and may have the potential to be translated as an effective scaffold in periodontal tissue engineering.
基金supported by the National Natural Science Foundation of China(No.50773070)the Key Basic Research Development Plan(Project 973) of China(No.2005CB623902)+1 种基金Grand Science and Technology Special Project of Zhejiang Province(No.2008C11087)Science and Technology Project of Zhejiang Province(No.2006C33067)
文摘In an effort to develop biomaterials to meet guided tissue regeneration (GTR) standards for periodontal tissue recovery, a homogeneous and transparent chitosan (CS)/hydroxyapatite (HA) membrane with potential applications as GTR barrier in periodontal therapy has been prepared via in situ compositing. The membrane has been designed to have a smoothrough asymmetric structure that meets the demand for GTR. Component and morphology of the membrane are characterized by XRD and SEM. It can be indicated that HA was in situ synthesized uniformly in the CS membrane. Mechanical experiments of the membranes with various HA contents show that their tensile strengths are adequate for periodontal therapy. Biological properties of the membrane have been performed by cell toxicity assays, hemolysis tests and animal experiments. Results indicate that the membrane has good biocompatibility and inductive effect for cell growth. Therefore this membrane can be potentially applied as GTR barrier membrane for periodontal tissue regeneration.
基金Jiangsu Provincial Education Department Fund(No.06 KJD320124)
文摘Objective: To evaluate the effectiveness of regenerous tissue and bone substitute in autogenous tooth transplantation in the larger recipient socket. Methods:In 3 Beagle dogs, 18 incisors were transplanted to the recipient sockets, 2 mm wider mesio-distally. The regenerous tissue group, the bone substitute group and the control group contained 7, 7 and 4 teeth respectively. No additional material was used in control group. Clinical and radiographic examinations were done every month and were sacrificed 3 months later. Subsequently, decalcified sections were prepared for routine histological evaluation. Ordinal scores for root surface resorption were analyzed using the Kruskal-Wallis test. Results:All donor teeth survived. A statistically significant difference was found among all three treatment groups(P= 0.0001). The proliferating tissue in space positively affected the periodontal healing without any resorption. Inflammatory resorption of the root surface and formation of new bone were observed in the bone substitute group. Surface resorptions of the roots were found in the control group. Conclusion:Proliferating tissues enhance the regeneration of periodontal tissues in larger recipient sockets and prevent root resorption. Sinbone HT is beneficial for the stabilization of the transplanted teeth in larger sockets.
基金the Natural Science Foundation of Fujian Province(2018J012345)。
文摘The purpose of this study was to primarily culture human periodontal ligament cells(hPDLCs)and to reprogram hPDLCs with exogenous genes via a lentivirus-mediated transfection system.Then induced pluripotent stem cells derived from h PDLCs(hPDLC-iPSCs)were identified.Alizarin red staining was used to observe the formation of mineralized nodules and real-time Polymerase Chain Reaction(PCR)was used to detect the expression of osteogenic genes.For the in vivo experiment,nude mouse skull defect models were established and cell sheets were made to repair the bone defect.The reprogrammed cells were positive for alkaline phosphatase(ALP)staining and embryonic stem cells(ESCs)-specific proteins,and could form teratomas.After osteogenic induction,alizarin red staining showed that the number of mineralized nodules in the h PDLC-i PSCs group was more and the osteogenic related factors ALP,osteocalcin(OCN),Col-I and Runx2 were also expressed higher in hPDLC-iPSCs.The hPDLC-iPSC cell sheets were all successfully made.Histological analysis showed that the h PDLC-i PSC cell sheet got new bone formation.These results demonstrated that hPDLC-iPSCs were successfully generated from human periodontal ligament fibroblasts and hPDLC-iPSC cell sheets provided new options for bone tissue engineering.
基金This work is supported by grants from 135 Medical EmphasisFoundation of Jiangsu Province (RC 2002018) and Natural Scienceand Technology Foundation of Nanjing Medical University(CX2003006).
文摘Background Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta superfamily, are powerful regulators of cartilage and bone formation. This study investigated the biological changes of NIH3T3 ceils incubated with secretive BMP2 that was induced by gene transfection through transwell.Methods Eukaryonic expression vector (pcDNA3. 1-B2 ) was transfered into NIH333 cells with Sofast^TM, a positive compound transfection agent. The positive cell clones were selected with G418. The cytoplasmic and extracellular expressions of BMP2 were determined by immunohistochemical stain and enzyme-linked immunosorbent assay. NIH333 ceils were co-cultured with hBMP2 gene transfecting ceils through transwell, and the ultrastructure, alkaline phosphatase activity and the expression of osteocalcin (the marker of osteogenetic differentiation) changes were observed.Results There were cytoplasmic and extracellular expressions of BMP2 in transfecting NIH3T3 ceils. The ultrastructural changes, the high activity of alkaline phosphatase and the positive stain of osteocalcin suggested the osteogenetic differentiation tendency of NIH3T3 cells co-cultured with transfecting NIH3T3 cells.Conclusion Secretive BMP2 that is induced by gene transfection could promote the osteogenetic differentiation of fibroblast ceils.