Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to...Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.展开更多
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical...Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.展开更多
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ...FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons.展开更多
The effect of platelet-rich plasma on nerve regeneration remains controversial.In this study,we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with pla...The effect of platelet-rich plasma on nerve regeneration remains controversial.In this study,we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma.Twenty-eight rabbits were divided into the following groups(7 rabbits/group):model,low-concentrati on PRP(2.5-3.5-fold concentration of whole blood platelets),medium-concentration PRP(4.5-6.5-fold concentration of whole blood platelets),and high-concentration PRP(7.5-8.5-fold concentration of whole blood platelets).Electrophysiological and histomorphometrical assessments and proteomics analysis we re used to evaluate regeneration of the sciatic nerve.Our results showed that platelet-rich plasma containing 4.5-6.5-and 7.5-8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury.Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration.Proteomics analysis showed that after sciatic nerve injury,platelet-rich plasma increased the expression of integrin subunitβ-8(ITGB8),which participates in angiogenesis,and differentially expressed proteins were mainly enriched in focal adhesion pathways.Additionally,two key proteins,ribosomal protein S27 a(RSP27 a)and ubiquilin 1(UBQLN1),which were selected after protein-protein interaction analysis,are involved in the regulation of ubiquitin levels in vivo.These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels.展开更多
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS h...The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses:(1) the branched anatomy of the peripheral nervous system,(2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed,(3) factors known to influence regeneration through branched nerve structures,(4) techniques and models of branched peripheral nerve injuries in animal models, and(5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system.展开更多
Neurotrophic factors,particularly nerve growth factor,enhance neuronal regeneration.However,the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages,such as its short biologic...Neurotrophic factors,particularly nerve growth factor,enhance neuronal regeneration.However,the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages,such as its short biological half-life,its contribution to pain response,and its inability to cross the blood-brain barrier.Considering that let-7(human miRNA)targets and regulates nerve growth factor,and that let-7 is a core regulator in peripheral nerve regeneration,we evaluated the possibilities of let-7 application in nerve repair.In this study,anti-let-7a was identified as the most suitable let-7 family molecule by analyses of endogenous expression and regulatory relationship,and functional screening.Let-7a antagomir demonstrated biosafety based on the results of in vivo safety assessments and it entered into the main cell types of the sciatic nerve,including Schwann cells,fibroblasts and macrophages.Use of hydrogel effectively achieved controlled,localized,and sustained delivery of let-7a antagomir.Finally,let-7a antagomir was integrated into chitosan conduit to construct a chitosan-hydrogel scaffold tissue-engineered nerve graft,which promoted nerve regeneration and functional recovery in a rat model of sciatic nerve transection.Our study provides an experimental basis for potential in vivo application of let-7a.展开更多
Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. ...Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.展开更多
Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows...Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows down the growth of dorsal root ganglion axons.However,the mechanism by which lncRNA H19 regulates neural repair and regeneration after peripheral nerve injury remains unclear.In this study,we established a Sprague-Dawley rat model of sciatic nerve transection injury.We performed in situ hybridization and found that at 4–7 days after sciatic nerve injury,lncRNA H19 was highly expressed.At 14 days before injury,adeno-associated virus was intrathecally injected into the L4–L5 foramina to disrupt or overexpress lncRNA H19.After overexpression of lncRNA H19,the growth of newly formed axons from the sciatic nerve was inhibited,whereas myelination was enhanced.Then,we performed gait analysis and thermal pain analysis to evaluate rat behavior.We found that lncRNA H19 overexpression delayed the recovery of rat behavior function,whereas interfering with lncRNA H19 expression improved functional recovery.Finally,we examined the expression of lncRNA H19 downstream target SEMA6D,and found that after lncRNA H19 overexpression,the SEMA6D protein level was increased.These findings suggest that lncRNA H19 regulates peripheral nerve degeneration and regeneration through activating SEMA6D in injured nerves.This provides a new clue to understand the role of lncRNA H19 in peripheral nerve degeneration and regeneration.展开更多
Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DP...Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.展开更多
The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium su...The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good his- tocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objec- tive and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.展开更多
With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because o...With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because of the subsequent impairment or absence of sensorimotor function. Uncomfortable complications of peripheral nerve injury, such as chronic pain, can also cause problems for families and society. A number of studies have demonstrated that the proper functioning of the nervous system depends not only on a complete connection from the central nervous system to the surrounding targets at an anatomical level, but also on the continuous bilateral communication between the two. After peripheral nerve injury, the interruption of afferent and efferent signals can cause complex pathophysiological changes, including neurochemical alterations, modifications in the adaptability of excitatory and inhibitory neurons, and the reorganization of somatosensory and motor regions. This review discusses the close relationship between the cerebral cortex and peripheral nerves. We also focus on common therapies for peripheral nerve injury and summarize their potential mechanisms in relation to cortical plasticity. It has been suggested that cortical plasticity may be important for improving functional recovery after peripheral nerve damage. Further understanding of the potential common mechanisms between cortical reorganization and nerve injury will help to elucidate the pathophysiological processes of nerve injury, and may allow for the reduction of adverse consequences during peripheral nerve injury recovery. We also review the role that regulating reorganization mechanisms plays in functional recovery, and conclude with a suggestion to target cortical plasticity along with therapeutic interventions to promote peripheral nerve injury recovery.展开更多
We have previously shown that Achyranthes bidentata polypeptides (ABPP), isolated from Achyranthes bidentata Blume (a medicinal herb), exhibit neurotrophic and neuroprotective effects on the nervous system. To ide...We have previously shown that Achyranthes bidentata polypeptides (ABPP), isolated from Achyranthes bidentata Blume (a medicinal herb), exhibit neurotrophic and neuroprotective effects on the nervous system. To identify the major active component of ABPP, and thus optimize the use of ABPP, we used reverse-phase high performance liquid chromatography to separate ABPP. We obtained 12 fractions, among which the fraction of ABPPk demonstrated the strongest neuroactivity. Immunocytochemistry and western blot analysis showed that ABPPk promoted neurite growth in cultured dorsal root ganglion explant and dorsal root ganglion neurons, which might be associated with activation of Erk1/2. A combination of behavioral tests, electrophysiological assessment, and histomorphometric analysis indicated that ABPPk enhanced nerve regeneration and function restoration in a mouse model of crushed sciatic nerve. All the results suggest that ABPPk, as the key component of ABPP, can be used for peripheral nerve repair to yield better outcomes than ABPP.展开更多
Inflammatory events occurring in the distal part of an injured peripheral nerve have, nowadays, a great resonance. Investigating the timing of action of the several cytokines in the important stages of Wallerian degen...Inflammatory events occurring in the distal part of an injured peripheral nerve have, nowadays, a great resonance. Investigating the timing of action of the several cytokines in the important stages of Wallerian degeneration helps to understand the regenerative process and design pharmacologic intervention that promotes and expedites recovery. The complex and synergistic action of inflammatory cytokines finally promotes axonal regeneration. Cytokines can be divided into pro- and anti-inflammatory cytokines that upregulate and downregulate, respectively, the production of inflammatory mediators. While pro-inflammatory cytokines are expressed in the first phase of Wallerian degeneration and promote the recruitment of macrophages, anti-inflammatory cytokines are expressed after this recruitment and downregulate the production of all cytokines, thus determining the end of the process. In this review, we describe the major inflammatory cytokines involved in Wallerian degeneration and the early phases of nerve regeneration. In particular, we focus on interleukin-1, interleukin-2, interleukin-6, tumor necrosis factor-β, interleukin-10 and transforming growth factor-β.展开更多
The regenerative capacity of peripheral nerves is limited after nerve injury.A number of growth factors modulate many cellular behaviors,such as proliferation and migration,and may contribute to nerve repair and regen...The regenerative capacity of peripheral nerves is limited after nerve injury.A number of growth factors modulate many cellular behaviors,such as proliferation and migration,and may contribute to nerve repair and regeneration.Our previous study observed the dynamic changes of genes in L4–6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing.Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3,9 hours,1,4,or 7 days after nerve crush,compared with the 0 hour control.Thirty-six rat models of sciatic nerve crush injury were prepared as described previously.Then,they were divided into six groups to measure the expression changes of representative genes at 0,3,9 hours,1,4 or 7 days post crush.Our current study measured the expression levels of representative upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin genes,and explored critical signaling pathways and biological process through bioinformatic analysis.Our data revealed that many of these dysregulated upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin,participated in tissue remodeling and axon growth-related biological processes Therefore,the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury.Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves.All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals,China(approval No.20170302-017)on March 2,2017.展开更多
Peripheral nerve injury leads to morphological, molecular and gene expression changes in the spinal cord and dorsal root ganglia, some of which have positive impact on the survival of neurons and nerve regeneration, w...Peripheral nerve injury leads to morphological, molecular and gene expression changes in the spinal cord and dorsal root ganglia, some of which have positive impact on the survival of neurons and nerve regeneration, while the effect of others is the opposite. It is crucial to take prompt measures to capitalize on the positive effects of these reactions and counteract the negative impact after peripheral nerve injury at the level of spinal cord, especially for peripheral nerve injuries that are severe, located close to the cell body, involve long distance for axons to regrow and happen in immature individuals. Early nerve repair, exogenous supply of neurotrophic factors and Schwann cells can sustain the regeneration inductive environment and enhance the positive changes in neurons. Administration of neurotrophic factors, acetyl-L-carnitine, N-acetyl-cysteine, and N-methyl-D-aspartate receptor antagonist MK-801 can help counteract axotomy-induced neuronal loss and promote regeneration, which are all time-dependent. Sustaining and reactivation of Schwann cells after denervation provides another effective strategy. FK506 can be used to accelerate axonal regeneration of neurons, especially after chronic axotomy. Exploring the axotomy-induced changes after peripheral nerve injury and applying protective and promotional measures in the spinal cord which help to retain a positive functional status for neuron cell bodies will inevitably benefit regeneration of the peripheral nerve and improve functional outcomes.展开更多
Neurotrophic factors,currently administered orally or by intravenous drip or intramuscular injection,are the main method for the treatment of peripheral nerve crush injury.However,the low effective drug concentration ...Neurotrophic factors,currently administered orally or by intravenous drip or intramuscular injection,are the main method for the treatment of peripheral nerve crush injury.However,the low effective drug concentration arriving at the injury site results in unsatisfactory outcomes.Therefore,there is an urgent need for a treatment method that can increase the effective drug concentration in the injured area.In this study,we first fabricated a gelatin modified by methacrylic anhydride hydrogel and loaded it with vascular endothelial growth factor that allowed the controlled release of the neurotrophic factor.This modified gelatin exhibited good physical and chemical properties,biocompatibility and supported the adhesion and proliferation of RSC96 cells and human umbilical vein endothelial cells.When injected into the epineurium of crushed nerves,the composite hydrogel in the rat sciatic nerve crush injury model promoted nerve regeneration,functional recovery and vascularization.The results showed that the modified gelatin gave sustained delivery of vascular endothelial growth factors and accelerated the repair of crushed peripheral nerves.展开更多
In China, there are approximately 20 million people suffering from peripheral nerve injury and this number is increasing at a rate of 2 million per year. These patients cannot live or work independently and are a heav...In China, there are approximately 20 million people suffering from peripheral nerve injury and this number is increasing at a rate of 2 million per year. These patients cannot live or work independently and are a heavy responsibility on both family and society because of extreme disability and dysfunction caused by peripheral nerve injury (PNI). Thus, repair of PNI has become a major public health issue in China.展开更多
Reading guide 1778Repair of long-segment peripheral nerve defects1779Bionic reconstruction of hand function after adult brachial plexus root avulsion1780Optimized design of regeneration material for the treatment of p...Reading guide 1778Repair of long-segment peripheral nerve defects1779Bionic reconstruction of hand function after adult brachial plexus root avulsion1780Optimized design of regeneration material for the treatment of peripheral nerve injury1781Synergism of electroactive polymeric materials and electrical stimulation promotes peripheral nerve repair1783Schwann cell effect on peripheral nerve repair and regeneration .展开更多
基金supported by the National Natural Science Foundation of China,Nos.31971277 and 31950410551(both to DY)。
文摘Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
基金supported by the National Natural Science Foundation of China,No.82104795 (to RH)。
文摘Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.
基金supported by the National Natural Science Foundation of China,No.81971177(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)the Peking University People's Hospital Research and Development Fund,No.RDX2021-01(to YK)。
文摘FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons.
基金supported by grants from the Department of Technology of Jilin Province,Nos.3D5195941430(to YSW),20190201087(to ZCK)the Department of Finance of Jilin Province,No.3D517DV93429(to ZCK)。
文摘The effect of platelet-rich plasma on nerve regeneration remains controversial.In this study,we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma.Twenty-eight rabbits were divided into the following groups(7 rabbits/group):model,low-concentrati on PRP(2.5-3.5-fold concentration of whole blood platelets),medium-concentration PRP(4.5-6.5-fold concentration of whole blood platelets),and high-concentration PRP(7.5-8.5-fold concentration of whole blood platelets).Electrophysiological and histomorphometrical assessments and proteomics analysis we re used to evaluate regeneration of the sciatic nerve.Our results showed that platelet-rich plasma containing 4.5-6.5-and 7.5-8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury.Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration.Proteomics analysis showed that after sciatic nerve injury,platelet-rich plasma increased the expression of integrin subunitβ-8(ITGB8),which participates in angiogenesis,and differentially expressed proteins were mainly enriched in focal adhesion pathways.Additionally,two key proteins,ribosomal protein S27 a(RSP27 a)and ubiquilin 1(UBQLN1),which were selected after protein-protein interaction analysis,are involved in the regulation of ubiquitin levels in vivo.These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels.
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
基金University of Wyoming Startup funds,United States Department of Defense,No. W81XWH-17-1-0402 (to JSB)the University of Wyoming Sensory Biology COBRE under National Institutes of Health (NIH),No. 5P20GM121310-02 (to JSB)+2 种基金the National Institute of General Medical Sciences of the NIH,No. P20GM103432 (to JSB)DOD AFIRM III,No. W81XWH-20-2-0029 (to GDB)a Lone Star Paralysis Foundation gi?t (to GDB)。
文摘The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses:(1) the branched anatomy of the peripheral nervous system,(2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed,(3) factors known to influence regeneration through branched nerve structures,(4) techniques and models of branched peripheral nerve injuries in animal models, and(5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system.
基金supported by the National Natural Science Foundation of China,No.31970968(to SYL)the Collegiate Natural Science Foundation of Jiangsu Province,No.16KJA310005(to SYL)+1 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions[PAPD]the Natural Science Foundation of Jiangsu Province,No.BK20200976(to XHW).
文摘Neurotrophic factors,particularly nerve growth factor,enhance neuronal regeneration.However,the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages,such as its short biological half-life,its contribution to pain response,and its inability to cross the blood-brain barrier.Considering that let-7(human miRNA)targets and regulates nerve growth factor,and that let-7 is a core regulator in peripheral nerve regeneration,we evaluated the possibilities of let-7 application in nerve repair.In this study,anti-let-7a was identified as the most suitable let-7 family molecule by analyses of endogenous expression and regulatory relationship,and functional screening.Let-7a antagomir demonstrated biosafety based on the results of in vivo safety assessments and it entered into the main cell types of the sciatic nerve,including Schwann cells,fibroblasts and macrophages.Use of hydrogel effectively achieved controlled,localized,and sustained delivery of let-7a antagomir.Finally,let-7a antagomir was integrated into chitosan conduit to construct a chitosan-hydrogel scaffold tissue-engineered nerve graft,which promoted nerve regeneration and functional recovery in a rat model of sciatic nerve transection.Our study provides an experimental basis for potential in vivo application of let-7a.
基金supported by the National Natural Science Foundation of China,No. 81801213 (to BP)Xuzhou Special Fund for Promoting Scientific and Technological Innovation,Nos. KC21177 (to BP),KC21195 (to HF)Science and Technology Project of Yili Kazak Autonomous Prefecture,No. YZ2019D006 (to HF)。
文摘Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.
基金supported by the National Natural Science Foundation of China,Nos.31971277(to DBY),31950410551(to DBY)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(to DBY)+2 种基金a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to DBY)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China,No.KYCX 19-2050(to JS)Jiangsu College Students’Innovation and Entrepreneurship Training Program,No.202213993005Y(to YY)。
文摘Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows down the growth of dorsal root ganglion axons.However,the mechanism by which lncRNA H19 regulates neural repair and regeneration after peripheral nerve injury remains unclear.In this study,we established a Sprague-Dawley rat model of sciatic nerve transection injury.We performed in situ hybridization and found that at 4–7 days after sciatic nerve injury,lncRNA H19 was highly expressed.At 14 days before injury,adeno-associated virus was intrathecally injected into the L4–L5 foramina to disrupt or overexpress lncRNA H19.After overexpression of lncRNA H19,the growth of newly formed axons from the sciatic nerve was inhibited,whereas myelination was enhanced.Then,we performed gait analysis and thermal pain analysis to evaluate rat behavior.We found that lncRNA H19 overexpression delayed the recovery of rat behavior function,whereas interfering with lncRNA H19 expression improved functional recovery.Finally,we examined the expression of lncRNA H19 downstream target SEMA6D,and found that after lncRNA H19 overexpression,the SEMA6D protein level was increased.These findings suggest that lncRNA H19 regulates peripheral nerve degeneration and regeneration through activating SEMA6D in injured nerves.This provides a new clue to understand the role of lncRNA H19 in peripheral nerve degeneration and regeneration.
基金Supported by Wuhan University of Science and Technology Startup Fund(Chu Tian Scholars Program),No.XZ2020024Open Laboratory Fund from Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration,No.2022kqhm005Hubei Provincial Health and Health Commission Research Project,No.WJ2023M121。
文摘Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+1 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043,31371210Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270
文摘The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good his- tocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objec- tive and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.
基金supported by the Key Laboratory of Trauma and Neural Regeneration (Peking University),Ministry of Education of China,No. BMU2020XY005-03National Natural Science Foundation of China,No. 31771322+2 种基金Beijing Science&Technology New Star Cross Project of China,No. 201819Major R&D Program of National Ministry of Science and Technology of China,No. 2018YFB1105504a grant from National Center for Trauma Medicine,Beijing,China,No. BMU2020XY005-01 (all to PXZ)。
文摘With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because of the subsequent impairment or absence of sensorimotor function. Uncomfortable complications of peripheral nerve injury, such as chronic pain, can also cause problems for families and society. A number of studies have demonstrated that the proper functioning of the nervous system depends not only on a complete connection from the central nervous system to the surrounding targets at an anatomical level, but also on the continuous bilateral communication between the two. After peripheral nerve injury, the interruption of afferent and efferent signals can cause complex pathophysiological changes, including neurochemical alterations, modifications in the adaptability of excitatory and inhibitory neurons, and the reorganization of somatosensory and motor regions. This review discusses the close relationship between the cerebral cortex and peripheral nerves. We also focus on common therapies for peripheral nerve injury and summarize their potential mechanisms in relation to cortical plasticity. It has been suggested that cortical plasticity may be important for improving functional recovery after peripheral nerve damage. Further understanding of the potential common mechanisms between cortical reorganization and nerve injury will help to elucidate the pathophysiological processes of nerve injury, and may allow for the reduction of adverse consequences during peripheral nerve injury recovery. We also review the role that regulating reorganization mechanisms plays in functional recovery, and conclude with a suggestion to target cortical plasticity along with therapeutic interventions to promote peripheral nerve injury recovery.
基金supported by a grant from National Key Basic Research Program of China(973 Program),No.2014CB542202a grant from Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)in China
文摘We have previously shown that Achyranthes bidentata polypeptides (ABPP), isolated from Achyranthes bidentata Blume (a medicinal herb), exhibit neurotrophic and neuroprotective effects on the nervous system. To identify the major active component of ABPP, and thus optimize the use of ABPP, we used reverse-phase high performance liquid chromatography to separate ABPP. We obtained 12 fractions, among which the fraction of ABPPk demonstrated the strongest neuroactivity. Immunocytochemistry and western blot analysis showed that ABPPk promoted neurite growth in cultured dorsal root ganglion explant and dorsal root ganglion neurons, which might be associated with activation of Erk1/2. A combination of behavioral tests, electrophysiological assessment, and histomorphometric analysis indicated that ABPPk enhanced nerve regeneration and function restoration in a mouse model of crushed sciatic nerve. All the results suggest that ABPPk, as the key component of ABPP, can be used for peripheral nerve repair to yield better outcomes than ABPP.
基金supported by Regione Piemonte founding(RSF-4097-2009)
文摘Inflammatory events occurring in the distal part of an injured peripheral nerve have, nowadays, a great resonance. Investigating the timing of action of the several cytokines in the important stages of Wallerian degeneration helps to understand the regenerative process and design pharmacologic intervention that promotes and expedites recovery. The complex and synergistic action of inflammatory cytokines finally promotes axonal regeneration. Cytokines can be divided into pro- and anti-inflammatory cytokines that upregulate and downregulate, respectively, the production of inflammatory mediators. While pro-inflammatory cytokines are expressed in the first phase of Wallerian degeneration and promote the recruitment of macrophages, anti-inflammatory cytokines are expressed after this recruitment and downregulate the production of all cytokines, thus determining the end of the process. In this review, we describe the major inflammatory cytokines involved in Wallerian degeneration and the early phases of nerve regeneration. In particular, we focus on interleukin-1, interleukin-2, interleukin-6, tumor necrosis factor-β, interleukin-10 and transforming growth factor-β.
基金supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.16KJA310005(to SYL)the Natural Science Foundation of Nantong City of China,No.JC2018058(to TMQ)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘The regenerative capacity of peripheral nerves is limited after nerve injury.A number of growth factors modulate many cellular behaviors,such as proliferation and migration,and may contribute to nerve repair and regeneration.Our previous study observed the dynamic changes of genes in L4–6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing.Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3,9 hours,1,4,or 7 days after nerve crush,compared with the 0 hour control.Thirty-six rat models of sciatic nerve crush injury were prepared as described previously.Then,they were divided into six groups to measure the expression changes of representative genes at 0,3,9 hours,1,4 or 7 days post crush.Our current study measured the expression levels of representative upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin genes,and explored critical signaling pathways and biological process through bioinformatic analysis.Our data revealed that many of these dysregulated upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin,participated in tissue remodeling and axon growth-related biological processes Therefore,the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury.Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves.All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals,China(approval No.20170302-017)on March 2,2017.
基金YL was supported by Chinese Scholar CouncilHW was supported by Mayo Clinic Center for Regenerative Medicine and Fund for the Center for Regenerative Medicine Program Director,Neuroregenerative Medicine
文摘Peripheral nerve injury leads to morphological, molecular and gene expression changes in the spinal cord and dorsal root ganglia, some of which have positive impact on the survival of neurons and nerve regeneration, while the effect of others is the opposite. It is crucial to take prompt measures to capitalize on the positive effects of these reactions and counteract the negative impact after peripheral nerve injury at the level of spinal cord, especially for peripheral nerve injuries that are severe, located close to the cell body, involve long distance for axons to regrow and happen in immature individuals. Early nerve repair, exogenous supply of neurotrophic factors and Schwann cells can sustain the regeneration inductive environment and enhance the positive changes in neurons. Administration of neurotrophic factors, acetyl-L-carnitine, N-acetyl-cysteine, and N-methyl-D-aspartate receptor antagonist MK-801 can help counteract axotomy-induced neuronal loss and promote regeneration, which are all time-dependent. Sustaining and reactivation of Schwann cells after denervation provides another effective strategy. FK506 can be used to accelerate axonal regeneration of neurons, especially after chronic axotomy. Exploring the axotomy-induced changes after peripheral nerve injury and applying protective and promotional measures in the spinal cord which help to retain a positive functional status for neuron cell bodies will inevitably benefit regeneration of the peripheral nerve and improve functional outcomes.
基金supported by the Interdisciplinary Program of Shanghai Jiao Tong University,China,No.YG2021QN60(both to WL)Fundamental Research Program Funding of Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,China,No.JYZZ086B(both to WL).
文摘Neurotrophic factors,currently administered orally or by intravenous drip or intramuscular injection,are the main method for the treatment of peripheral nerve crush injury.However,the low effective drug concentration arriving at the injury site results in unsatisfactory outcomes.Therefore,there is an urgent need for a treatment method that can increase the effective drug concentration in the injured area.In this study,we first fabricated a gelatin modified by methacrylic anhydride hydrogel and loaded it with vascular endothelial growth factor that allowed the controlled release of the neurotrophic factor.This modified gelatin exhibited good physical and chemical properties,biocompatibility and supported the adhesion and proliferation of RSC96 cells and human umbilical vein endothelial cells.When injected into the epineurium of crushed nerves,the composite hydrogel in the rat sciatic nerve crush injury model promoted nerve regeneration,functional recovery and vascularization.The results showed that the modified gelatin gave sustained delivery of vascular endothelial growth factors and accelerated the repair of crushed peripheral nerves.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+1 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270
文摘In China, there are approximately 20 million people suffering from peripheral nerve injury and this number is increasing at a rate of 2 million per year. These patients cannot live or work independently and are a heavy responsibility on both family and society because of extreme disability and dysfunction caused by peripheral nerve injury (PNI). Thus, repair of PNI has become a major public health issue in China.
基金supported by the National Natural Science Foundation of ChinaNo.31271055+37 种基金3147094420906088funded by the Chinese National Ministry of Science and Technology 973 ProjectNo.2014CB542201863 ProjectNo.SS2015AA020501the Ministry of Education Innovation Team(IRT1201)the National Natural Science FundNo.31571235313712103127128431171150the Educational Ministry New Century Excellent Talents Support ProjectNo.BMU20110270supported by the National Natural Science Foundation of ChinaNo.31200799 and 81571198the New Century Excellent Talents in UniversityNo.NCET-12-0742the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)supported by the Key Talent Fund Project of "Science Education for Health"Engineering of Health Department of Jiangsu Province of ChinaNo.RC2011101funded by Chinese National Ministry of Science and Technology 973 ProjectNo.2014CB542202Natural Science Foundation of ChinaNo.8137135481571182Natural Science Foundation of Guangdong ProvinceNo.S2013010014697Science and Technology Foundation of Guangdong ProvinceNo.2015A020212024funded by the National Natural Science Foundation of ChinaNo.3117094631300805the People’s Liberation Army 12th Five-Year Plan PeriodNo.BWS11J025the National Basic Research Program of ChinaNo.2012CB5181062014CB542201
文摘Reading guide 1778Repair of long-segment peripheral nerve defects1779Bionic reconstruction of hand function after adult brachial plexus root avulsion1780Optimized design of regeneration material for the treatment of peripheral nerve injury1781Synergism of electroactive polymeric materials and electrical stimulation promotes peripheral nerve repair1783Schwann cell effect on peripheral nerve repair and regeneration .