Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,...Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,and other bioactive molecules.Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders.These exosomes exhibit multifaceted properties including antiapoptotic,anti-inflammatory,neurogenic,and vasculogenic effects.Furthermore,exosomes offer several advantages over stem cell therapy,such as high preservation capacity,low immunogenicity,the ability to traverse the blood-brain barrier,and the potential for drug encapsulation.Consequently,researchers have turned their attention to exosomes as a novel therapeutic avenue.Nonetheless,akin to the limitations of stem cell treatment,the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application.To overcome this hurdle,intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system.By exploiting the olfactory and trigeminal nerve axons,this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier.Notably,exosomes,owing to their small size,can readily access the nerve pathways using this method.As a result,intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosomebased treatments.In this comprehensive review,we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases.Furthermore,we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach.展开更多
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular funct...Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.展开更多
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expresse...CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.展开更多
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous syst...The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.展开更多
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met...Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.展开更多
Background: Peripheral artery disease (PAD) poses a significant health concern, particularly in Sub-Saharan Africa, where its prevalence is increasing. [1] Despite its significance, there is limited understanding of P...Background: Peripheral artery disease (PAD) poses a significant health concern, particularly in Sub-Saharan Africa, where its prevalence is increasing. [1] Despite its significance, there is limited understanding of PAD among hypertensive patients in this region, highlighting a critical gap in knowledge. This study aimed to investigate the prevalence of PAD and associated factors in black hypertensive patients. Methods: A descriptive and analytical cross-sectional study was conducted over two years at a primary care center in Senegal using their ankle-brachial index (ABI) database. Data collection was strictly retrospective, and sociodemographic characteristics and clinical parameters were retrieved from the local patient database. We included all hypertensive patients who had benefited from an ABI. Statistical analysis was performed using the SPSS 18.0 software program. Results: Among the 220 hypertensive patients enrolled, PAD prevalence was 35%. Significant associations were observed between PAD occurrence and older age (>75 years, p = 0.008) and triple therapy (p = 0.015). Multivariate analysis confirmed age >75 years as a strong predictor of PAD in hypertensive patients (p = 0.01, OR = 4.6). Furthermore, PAD prevalence increased with the severity of hypertension (p = 0.03), emphasizing the need for targeted screening strategies in this population. Conclusion: Despite its limits, this study underscores the urgent need for improved access to healthcare services and tailored screening programs. The findings highlight the growing burden of PAD in Sub-Saharan Africa and the essential role of early detection and intervention, particularly in high-risk populations such as hypertensive individuals. Collaborative efforts involving healthcare providers, policymakers, and community stakeholders are crucial to implement effective interventions and reduce the impact of PAD on population health outcomes.展开更多
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi...By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.展开更多
BACKGROUND Peripheral vascular disease(PVD)is a common complication of type 2 diabetes mellitus(T2DM).Patients with T2DM have twice the risk of PVD as nondiabetic patients.AIM To evaluate left ventricular(LV)systolic ...BACKGROUND Peripheral vascular disease(PVD)is a common complication of type 2 diabetes mellitus(T2DM).Patients with T2DM have twice the risk of PVD as nondiabetic patients.AIM To evaluate left ventricular(LV)systolic function by layer-specific global longitudinal strain(GLS)and peak strain dispersion(PSD)in T2DM patients with and without PVD.METHODS Sixty-five T2DM patients without PVD,57 T2DM patients with PVD and 63 normal controls were enrolled in the study.Layer-specific GLS[GLS of the epimyocardium(GLSepi),GLS of the middle myocardium(GLSmid)and GLS of the endocardium(GLSendo)]and PSD were calculated.Receiver operating characteristic(ROC)analysis was performed to calculate the sensitivity and specificity of LV systolic dysfunction in T2DM patients with PVD.We calculated Pearson’s correlation coefficients between biochemical data,echocardiographic characteristics,and layer-specific GLS and PSD.RESULTS There were significant differences in GLSepi,GLSmid and GLSendo between normal controls,T2DM patients without PVD and T2DM patients with PVD(P<0.001).Trend tests revealed a ranking of normal controls>T2DM patients without PVD>T2DM patients with PVD in the absolute value of GLS(P<0.001).PSD differed significantly between the three groups,and the trend ranking was as follows:normal controls<T2DM patients without PVD<T2DM patients with PVD(P<0.001).ROC analysis revealed that the combination of layer-specific GLS and PSD had high diagnostic efficiency for detecting LV systolic dysfunction in T2DM patients with PVD.Lowdensity lipoprotein cholesterol was positively correlated with GLSepi,GLSmid and PSD(P<0.05),while LV ejection fraction was negatively correlated with GLSepi,GLSmid and GLSendo in T2DM patients with PVD(P<0.01).CONCLUSION PVD may aggravate the deterioration of LV systolic dysfunction in T2DM patients.Layer-specific GLS and PSD can be used to detect LV systolic dysfunction accurately and conveniently in T2DM patients with or without PVD.展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
Peripheral artery disease(PAD)is a common condition characterized by atherosclerosis in the peripheral arteries,associated with concomitant coronary and cerebrovascular diseases.Proprotein convertase subtilisin/kexin ...Peripheral artery disease(PAD)is a common condition characterized by atherosclerosis in the peripheral arteries,associated with concomitant coronary and cerebrovascular diseases.Proprotein convertase subtilisin/kexin type 9(PCSK9)inhibitors are a class of drugs that have shown potential in hypercholesterolemic patients.This review focuses on the efficacy,safety,and clinical outcomes of PCSK9 inhibitors in PAD based on the literature indexed by PubMed.Trials such as FOURIER and ODYSSEY demonstrate the efficacy of evolocumab and alirocumab in reducing cardiovascular events,offering a potential treatment option for PAD patients.Safety evaluations from trials show few adverse events,most of which are injection-site reactions,indicating the overall safety profile of PCSK9 inhibitors.Clinical outcomes show a reduction in cardiovascular events,ischemic strokes,and major adverse limb events.However,despite these positive findings,PCSK9 inhibitors are still underutilized in clinical practice,possibly due to a lack of awareness among care providers and cost concerns.Further research is needed to establish the long-term effects and cost-effectiveness of PCSK9 inhibitors in PAD patients.展开更多
Cerebrolysin is a drug consisting of low-molecular-weight neurotrophic peptides and free amino acids. Cerebrolysin has been shown to ameliorate the effects of oxidative stress, reduce apoptosis, and promote neuronal g...Cerebrolysin is a drug consisting of low-molecular-weight neurotrophic peptides and free amino acids. Cerebrolysin has been shown to ameliorate the effects of oxidative stress, reduce apoptosis, and promote neuronal growth in several degenerative and acquired central nervous system insults, including dementias, stroke, and traumatic injuries. Little is known about its therapeutic efficacy in peripheral nervous system diseases. In this study, we clinically evaluated the effects of cerebrolysin on peripheral nervous system lesions. We evaluated the clinical efficacy of cerebrolysin in six patients with the following conditions who failed to respond to conventional therapies: (1) atonic bladder due to inflammatory radiculitis; (2) paraplegia due to inflammatory radiculoneuropathy; (3) post-traumatic brachial plexopathy; (4) compressive radial nerve injury; (5) post-traumatic facial nerve paralysis; and (6) diabetic ophthalmoplegia. Our results showed that cerebrolysin was more associated with rapid neurological recovery after various peripheral nerve lesions than other therapies including steroids and supportive therapies such as vitamins and antioxidants. The present results support the therapeutic efficacy of cerebrolysin in the treatment of acquired peripheral nervous system diseases.展开更多
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin...Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.展开更多
Vimentin is a major type Ⅲ intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protei...Vimentin is a major type Ⅲ intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout(GFAPVIM) mice. However, attenuated glial scar formation in post-stroke in GFAP–/– VIM–/– mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIMmice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis a...N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m^(6)A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m^(6)A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m^(6)A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m^(6)A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m^(6)A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m^(6)A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m^(6)A's role in neurodegenerative processes. The roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the timespecific nature of m^(6)A and its varying effects on distinct brain regions and in different environments.展开更多
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat...Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.展开更多
Although there are challenges in treating traumatic central nervous system diseases,mesenchymal stem cell-de rived extracellular vesicles(MSC-EVs) have recently proven to be a promising non-cellular the rapy.We compre...Although there are challenges in treating traumatic central nervous system diseases,mesenchymal stem cell-de rived extracellular vesicles(MSC-EVs) have recently proven to be a promising non-cellular the rapy.We comprehensively evaluated the efficacy of mesenchymal stem cell-de rived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies.Our meta-analysis was registered at PROSPERO(CRD42022327904,May 24,2022).To fully retrieve the most relevant articles,the following databases were thoro ughly searched:PubMed,Web of Science,The Cochrane Library,and Ovid-Embase(up to April 1,2022).The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases.The Systematic Review Centre for Laboratory Animal Experimentation(SYRCLE)’s risk of bias tool was used to examine the risk of publication bias in animal studies.After screening 2347studies,60 studies were included in this study.A meta-analysis was conducted for spinal co rd injury(n=52) and traumatic brain injury(n=8).The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal co rd injury animals,including rat Basso,Beattie and Bresnahan locomotor rating scale scores(standardized mean difference [SMD]:2.36,95% confidence interval [CI]:1.96-2.76,P <0.01,I2=71%) and mouse Basso Mouse Scale scores(SMD=2.31,95% CI:1.57-3.04,P=0.01,I2=60%) compared with controls.Further,mesenchymal stem cell-de rived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals,including the modified N eurological Severity Score(SMD=-4.48,95% CI:-6.12 to-2.84,P <0.01,I2=79%) and Foot Fault Test(SMD=-3.26,95% CI:-4.09 to-2.42,P=0.28,I2=21%) compared with controls.Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-de rived extra cellular vesicles.For Basso,Beattie and Bresnahan locomotor rating scale scores,the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles(allogeneic:SMD=2.54,95% CI:2.05-3.02,P=0.0116,I2=65.5%;xenogeneic:SMD:1.78,95%CI:1.1-2.45,P=0.0116,I2=74.6%).Mesenchymal stem cellde rived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultra centrifugation(SMD=3.58,95% CI:2.62-4.53,P <0.0001,I2=31%) may be more effective than other EV isolation methods.For mouse Basso Mouse Scale scores,placenta-derived mesenchymal stem cell-de rived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles(placenta:SMD=5.25,95% CI:2.45-8.06,P=0.0421,I2=0%;bone marrow:SMD=1.82,95% CI:1.23-2.41,P=0.0421,I2=0%).For modified Neurological Severity Score,bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs(bone marrow:SMD=-4.86,95% CI:-6.66 to-3.06,P=0.0306,I2=81%;adipose:SMD=-2.37,95% CI:-3.73 to-1.01,P=0.0306,I2=0%).Intravenous administration(SMD=-5.47,95% CI:-6.98 to-3.97,P=0.0002,I2=53.3%) and dose of administration equal to 100 μg(SMD=-5.47,95% CI:-6.98 to-3.97,P <0.0001,I2=53.3%)showed better res ults than other administration routes and doses.The heterogeneity of studies was small,and sensitivity analysis also indicated stable results.Last,the methodological quality of all trials was mostly satisfactory.In conclusion,in the treatment of traumatic central nervous system diseases,mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery.展开更多
Autoimmune diseases of the nervous system(ADNS)are characterized by the formation of a pronounced neurologic deficit and often lead to disability.The attention of doctors and researchers is increasingly attracted by c...Autoimmune diseases of the nervous system(ADNS)are characterized by the formation of a pronounced neurologic deficit and often lead to disability.The attention of doctors and researchers is increasingly attracted by complementary medicine as adjuvant or preventive therapy for various diseases,including autoimmune diseases.Traditional Chinese medicine(TCM)is a combination of treatment methods that include acupuncture,herbal medicine,dietetics,physical exercises,and other methods that are often used in conjunction with recognized approaches of official medical science.The article describes the application of TCM techniques in autoimmune diseases of the nervous system,and demonstrates clinical experience in the use of acupuncture,herbal medicine,diets and physical exercises.Traditional and complementary medicine is an important and often underestimated healthcare resource,especially in the prevention and treatment of autoimmune diseases of the nervous system.展开更多
This paper provides an overview of autoimmune disorders of the central nervous system,specifically those caused by demyelination.We explore new research regarding potential therapeutic interventions,particularly those...This paper provides an overview of autoimmune disorders of the central nervous system,specifically those caused by demyelination.We explore new research regarding potential therapeutic interventions,particularly those aimed at inducing remyelination.Remyelination is a detailed process,involving many cell types–oligodendrocyte precursor cells(OPCs),astrocytes,and microglia–and both the innate and adaptive immune systems.Our discussion of this process includes the differentiation potential of neural stem cells,the function of adult OPCs,and the impact of molecular mediators on myelin repair.Emerging therapies are also explored,with mechanisms of action including the induction of OPC differentiation,the transplantation of mesenchymal stem cells,and the use of molecular mediators.Further,we discuss current medical advancements in relation to many myelin-related disorders,including multiple sclerosis,optic neuritis,neuromyelitis optica spectrum disorder,myelin oligodendrocyte glycoprotein antibodyassociated disease,transverse myelitis,and acute disseminated encephalomyelitis.Beyond these emerging systemic therapies,we also introduce the dimethyl fumarate/silk fibroin nerve conduit and its potential role in the treatment of peripheral nerve injuries.Despite these aforementioned scientific advancements,this paper maintains the need for ongoing research to deepen our understanding of demyelinating diseases and advance therapeutic strategies that enhance affected patients’quality of life.展开更多
BACKGROUND Thalidomide is an effective treatment for refractory Crohn’s disease(CD).However,thalidomide-induced peripheral neuropathy(TiPN),which has a large individual variation,is a major cause of treatment failure...BACKGROUND Thalidomide is an effective treatment for refractory Crohn’s disease(CD).However,thalidomide-induced peripheral neuropathy(TiPN),which has a large individual variation,is a major cause of treatment failure.TiPN is rarely predictable and recognized,especially in CD.It is necessary to develop a risk model to predict TiPN occurrence.AIM To develop and compare a predictive model of TiPN using machine learning based on comprehensive clinical and genetic variables.METHODS A retrospective cohort of 164 CD patients from January 2016 to June 2022 was used to establish the model.The National Cancer Institute Common Toxicity Criteria Sensory Scale(version 4.0)was used to assess TiPN.With 18 clinical features and 150 genetic variables,five predictive models were established and evaluated by the confusion matrix receiver operating characteristic curve(AUROC),area under the precision-recall curve(AUPRC),specificity,sensitivity(recall rate),precision,accuracy,and F1 score.RESULTS The top-ranking five risk variables associated with TiPN were interleukin-12 rs1353248[P=0.0004,odds ratio(OR):8.983,95%confidence interval(CI):2.497-30.90],dose(mg/d,P=0.002),brainderived neurotrophic factor(BDNF)rs2030324(P=0.001,OR:3.164,95%CI:1.561-6.434),BDNF rs6265(P=0.001,OR:3.150,95%CI:1.546-6.073)and BDNF rs11030104(P=0.001,OR:3.091,95%CI:1.525-5.960).In the training set,gradient boosting decision tree(GBDT),extremely random trees(ET),random forest,logistic regression and extreme gradient boosting(XGBoost)obtained AUROC values>0.90 and AUPRC>0.87.Among these models,XGBoost and GBDT obtained the first two highest AUROC(0.90 and 1),AUPRC(0.98 and 1),accuracy(0.96 and 0.98),precision(0.90 and 0.95),F1 score(0.95 and 0.98),specificity(0.94 and 0.97),and sensitivity(1).In the validation set,XGBoost algorithm exhibited the best predictive performance with the highest specificity(0.857),accuracy(0.818),AUPRC(0.86)and AUROC(0.89).ET and GBDT obtained the highest sensitivity(1)and F1 score(0.8).Overall,compared with other state-of-the-art classifiers such as ET,GBDT and RF,XGBoost algorithm not only showed a more stable performance,but also yielded higher ROC-AUC and PRC-AUC scores,demonstrating its high accuracy in prediction of TiPN occurrence.CONCLUSION The powerful XGBoost algorithm accurately predicts TiPN using 18 clinical features and 14 genetic variables.With the ability to identify high-risk patients using single nucleotide polymorphisms,it offers a feasible option for improving thalidomide efficacy in CD patients.展开更多
基金supported by KAKENHI under grant number 23K08535,22K09274(to MK)。
文摘Exosomes,lipid bilayer-enclosed small cellular vesicles,are actively secreted by various cells and play crucial roles in intercellular communication.These nanosized vesicles transport internalized proteins,mRNA,miRNA,and other bioactive molecules.Recent findings have provided compelling evidence that exosomes derived from stem cells hold great promise as a therapeutic modality for central nervous system disorders.These exosomes exhibit multifaceted properties including antiapoptotic,anti-inflammatory,neurogenic,and vasculogenic effects.Furthermore,exosomes offer several advantages over stem cell therapy,such as high preservation capacity,low immunogenicity,the ability to traverse the blood-brain barrier,and the potential for drug encapsulation.Consequently,researchers have turned their attention to exosomes as a novel therapeutic avenue.Nonetheless,akin to the limitations of stem cell treatment,the limited accumulation of exosomes in the injured brain poses a challenge to their clinical application.To overcome this hurdle,intranasal administration has emerged as a non-invasive and efficacious route for delivering drugs to the central nervous system.By exploiting the olfactory and trigeminal nerve axons,this approach enables the direct transport of therapeutics to the brain while bypassing the blood-brain barrier.Notably,exosomes,owing to their small size,can readily access the nerve pathways using this method.As a result,intranasal administration has gained increasing recognition as an optimal therapeutic strategy for exosomebased treatments.In this comprehensive review,we aim to provide an overview of both basic and clinical research studies investigating the intranasal administration of exosomes for the treatment of central nervous system diseases.Furthermore,we elucidate the underlying therapeutic mechanisms and offer insights into the prospect of this approach.
基金supported by the Natural Science Foundation of Zhejiang Province,No.LQ23C090003 (to CZ)the Major Project on Brain Science and Analog Brain Research of Ministry of Science and Technology of China,No.2022ZD0204701 (to MQ)the National Natural Science Foundation of China,No.32170969 (to MQ)。
文摘Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
基金supported by the National Major Project of Research and Development,No.2022YFA1105500(to SZ)the National Natural Science Foundation of China,No.81870975(to SZ)Innovation Program for Graduate Students in Jiangsu Province of China,No.KYCX223335(to MZ)。
文摘CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
文摘The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.
基金supported by the National Natural Science Foundation of China, No.82274616the Key Laboratory Project for General Universities in Guangdong Province, No.2019KSYS005Guangdong Province Science and Technology Plan International Cooperation Project, No.2020A0505100052 (all to QW)。
文摘Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
文摘Background: Peripheral artery disease (PAD) poses a significant health concern, particularly in Sub-Saharan Africa, where its prevalence is increasing. [1] Despite its significance, there is limited understanding of PAD among hypertensive patients in this region, highlighting a critical gap in knowledge. This study aimed to investigate the prevalence of PAD and associated factors in black hypertensive patients. Methods: A descriptive and analytical cross-sectional study was conducted over two years at a primary care center in Senegal using their ankle-brachial index (ABI) database. Data collection was strictly retrospective, and sociodemographic characteristics and clinical parameters were retrieved from the local patient database. We included all hypertensive patients who had benefited from an ABI. Statistical analysis was performed using the SPSS 18.0 software program. Results: Among the 220 hypertensive patients enrolled, PAD prevalence was 35%. Significant associations were observed between PAD occurrence and older age (>75 years, p = 0.008) and triple therapy (p = 0.015). Multivariate analysis confirmed age >75 years as a strong predictor of PAD in hypertensive patients (p = 0.01, OR = 4.6). Furthermore, PAD prevalence increased with the severity of hypertension (p = 0.03), emphasizing the need for targeted screening strategies in this population. Conclusion: Despite its limits, this study underscores the urgent need for improved access to healthcare services and tailored screening programs. The findings highlight the growing burden of PAD in Sub-Saharan Africa and the essential role of early detection and intervention, particularly in high-risk populations such as hypertensive individuals. Collaborative efforts involving healthcare providers, policymakers, and community stakeholders are crucial to implement effective interventions and reduce the impact of PAD on population health outcomes.
基金Supported by The Guangdong Basic and Applied Basic Research Foundation,China,No.2024A1515011236.
文摘By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.
基金Supported by The Science and Technology Project of Changzhou Health Commission,No.ZD202342.
文摘BACKGROUND Peripheral vascular disease(PVD)is a common complication of type 2 diabetes mellitus(T2DM).Patients with T2DM have twice the risk of PVD as nondiabetic patients.AIM To evaluate left ventricular(LV)systolic function by layer-specific global longitudinal strain(GLS)and peak strain dispersion(PSD)in T2DM patients with and without PVD.METHODS Sixty-five T2DM patients without PVD,57 T2DM patients with PVD and 63 normal controls were enrolled in the study.Layer-specific GLS[GLS of the epimyocardium(GLSepi),GLS of the middle myocardium(GLSmid)and GLS of the endocardium(GLSendo)]and PSD were calculated.Receiver operating characteristic(ROC)analysis was performed to calculate the sensitivity and specificity of LV systolic dysfunction in T2DM patients with PVD.We calculated Pearson’s correlation coefficients between biochemical data,echocardiographic characteristics,and layer-specific GLS and PSD.RESULTS There were significant differences in GLSepi,GLSmid and GLSendo between normal controls,T2DM patients without PVD and T2DM patients with PVD(P<0.001).Trend tests revealed a ranking of normal controls>T2DM patients without PVD>T2DM patients with PVD in the absolute value of GLS(P<0.001).PSD differed significantly between the three groups,and the trend ranking was as follows:normal controls<T2DM patients without PVD<T2DM patients with PVD(P<0.001).ROC analysis revealed that the combination of layer-specific GLS and PSD had high diagnostic efficiency for detecting LV systolic dysfunction in T2DM patients with PVD.Lowdensity lipoprotein cholesterol was positively correlated with GLSepi,GLSmid and PSD(P<0.05),while LV ejection fraction was negatively correlated with GLSepi,GLSmid and GLSendo in T2DM patients with PVD(P<0.01).CONCLUSION PVD may aggravate the deterioration of LV systolic dysfunction in T2DM patients.Layer-specific GLS and PSD can be used to detect LV systolic dysfunction accurately and conveniently in T2DM patients with or without PVD.
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.
文摘Peripheral artery disease(PAD)is a common condition characterized by atherosclerosis in the peripheral arteries,associated with concomitant coronary and cerebrovascular diseases.Proprotein convertase subtilisin/kexin type 9(PCSK9)inhibitors are a class of drugs that have shown potential in hypercholesterolemic patients.This review focuses on the efficacy,safety,and clinical outcomes of PCSK9 inhibitors in PAD based on the literature indexed by PubMed.Trials such as FOURIER and ODYSSEY demonstrate the efficacy of evolocumab and alirocumab in reducing cardiovascular events,offering a potential treatment option for PAD patients.Safety evaluations from trials show few adverse events,most of which are injection-site reactions,indicating the overall safety profile of PCSK9 inhibitors.Clinical outcomes show a reduction in cardiovascular events,ischemic strokes,and major adverse limb events.However,despite these positive findings,PCSK9 inhibitors are still underutilized in clinical practice,possibly due to a lack of awareness among care providers and cost concerns.Further research is needed to establish the long-term effects and cost-effectiveness of PCSK9 inhibitors in PAD patients.
文摘Cerebrolysin is a drug consisting of low-molecular-weight neurotrophic peptides and free amino acids. Cerebrolysin has been shown to ameliorate the effects of oxidative stress, reduce apoptosis, and promote neuronal growth in several degenerative and acquired central nervous system insults, including dementias, stroke, and traumatic injuries. Little is known about its therapeutic efficacy in peripheral nervous system diseases. In this study, we clinically evaluated the effects of cerebrolysin on peripheral nervous system lesions. We evaluated the clinical efficacy of cerebrolysin in six patients with the following conditions who failed to respond to conventional therapies: (1) atonic bladder due to inflammatory radiculitis; (2) paraplegia due to inflammatory radiculoneuropathy; (3) post-traumatic brachial plexopathy; (4) compressive radial nerve injury; (5) post-traumatic facial nerve paralysis; and (6) diabetic ophthalmoplegia. Our results showed that cerebrolysin was more associated with rapid neurological recovery after various peripheral nerve lesions than other therapies including steroids and supportive therapies such as vitamins and antioxidants. The present results support the therapeutic efficacy of cerebrolysin in the treatment of acquired peripheral nervous system diseases.
基金supported by the National Natural Science Foundation of China,Nos.82230042 and 81930029(to ZY),U2004201(to FG and RYP)the China Postdoctoral Science Foundation,No.2020M683748(to RYP)。
文摘Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.
基金supported by the National Natural Science Foundation of China,No. 82071374Discipline Construction Project of Guangdong Medical University,Nos. 1.13 and 4.1.19+1 种基金College Students Innovative Experimental Project in Guangdong Medical University,Nos. FYDB015, ZCDS001, ZYDB004, ZYDB016, and ZZDI001College Students’ Science and Technology Innovation Training Project,Nos. GDMU2020194, GDMU2020195, GDMU2021021, GDMU2021023, GDMU2021091, GDMU2021111 (all to HFW)。
文摘Vimentin is a major type Ⅲ intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout(GFAPVIM) mice. However, attenuated glial scar formation in post-stroke in GFAP–/– VIM–/– mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIMmice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金supported by the Natural Science Foundation of Heilongjiang Province of China,Outstanding Youth Foundation,No.YQ2022H003 (to DW)。
文摘N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m^(6)A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m^(6)A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m^(6)A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m^(6)A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m^(6)A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m^(6)A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m^(6)A's role in neurodegenerative processes. The roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the timespecific nature of m^(6)A and its varying effects on distinct brain regions and in different environments.
基金supported by the National Natural Science Foundation of China,Nos.82271411(to RG),51803072(to WLiu)grants from the Department of Finance of Jilin Province,Nos.2022SCZ25(to RG),2022SCZ10(to WLiu),2021SCZ07(to RG)+2 种基金Jilin Provincial Science and Technology Program,No.YDZJ202201ZYTS038(to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University,No.2022qnpy11(to WLuo)The Project of China-Japan Union Hospital of Jilin University,No.XHQMX20233(to RG)。
文摘Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
文摘Although there are challenges in treating traumatic central nervous system diseases,mesenchymal stem cell-de rived extracellular vesicles(MSC-EVs) have recently proven to be a promising non-cellular the rapy.We comprehensively evaluated the efficacy of mesenchymal stem cell-de rived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies.Our meta-analysis was registered at PROSPERO(CRD42022327904,May 24,2022).To fully retrieve the most relevant articles,the following databases were thoro ughly searched:PubMed,Web of Science,The Cochrane Library,and Ovid-Embase(up to April 1,2022).The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases.The Systematic Review Centre for Laboratory Animal Experimentation(SYRCLE)’s risk of bias tool was used to examine the risk of publication bias in animal studies.After screening 2347studies,60 studies were included in this study.A meta-analysis was conducted for spinal co rd injury(n=52) and traumatic brain injury(n=8).The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal co rd injury animals,including rat Basso,Beattie and Bresnahan locomotor rating scale scores(standardized mean difference [SMD]:2.36,95% confidence interval [CI]:1.96-2.76,P <0.01,I2=71%) and mouse Basso Mouse Scale scores(SMD=2.31,95% CI:1.57-3.04,P=0.01,I2=60%) compared with controls.Further,mesenchymal stem cell-de rived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals,including the modified N eurological Severity Score(SMD=-4.48,95% CI:-6.12 to-2.84,P <0.01,I2=79%) and Foot Fault Test(SMD=-3.26,95% CI:-4.09 to-2.42,P=0.28,I2=21%) compared with controls.Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-de rived extra cellular vesicles.For Basso,Beattie and Bresnahan locomotor rating scale scores,the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles(allogeneic:SMD=2.54,95% CI:2.05-3.02,P=0.0116,I2=65.5%;xenogeneic:SMD:1.78,95%CI:1.1-2.45,P=0.0116,I2=74.6%).Mesenchymal stem cellde rived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultra centrifugation(SMD=3.58,95% CI:2.62-4.53,P <0.0001,I2=31%) may be more effective than other EV isolation methods.For mouse Basso Mouse Scale scores,placenta-derived mesenchymal stem cell-de rived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles(placenta:SMD=5.25,95% CI:2.45-8.06,P=0.0421,I2=0%;bone marrow:SMD=1.82,95% CI:1.23-2.41,P=0.0421,I2=0%).For modified Neurological Severity Score,bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs(bone marrow:SMD=-4.86,95% CI:-6.66 to-3.06,P=0.0306,I2=81%;adipose:SMD=-2.37,95% CI:-3.73 to-1.01,P=0.0306,I2=0%).Intravenous administration(SMD=-5.47,95% CI:-6.98 to-3.97,P=0.0002,I2=53.3%) and dose of administration equal to 100 μg(SMD=-5.47,95% CI:-6.98 to-3.97,P <0.0001,I2=53.3%)showed better res ults than other administration routes and doses.The heterogeneity of studies was small,and sensitivity analysis also indicated stable results.Last,the methodological quality of all trials was mostly satisfactory.In conclusion,in the treatment of traumatic central nervous system diseases,mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery.
文摘Autoimmune diseases of the nervous system(ADNS)are characterized by the formation of a pronounced neurologic deficit and often lead to disability.The attention of doctors and researchers is increasingly attracted by complementary medicine as adjuvant or preventive therapy for various diseases,including autoimmune diseases.Traditional Chinese medicine(TCM)is a combination of treatment methods that include acupuncture,herbal medicine,dietetics,physical exercises,and other methods that are often used in conjunction with recognized approaches of official medical science.The article describes the application of TCM techniques in autoimmune diseases of the nervous system,and demonstrates clinical experience in the use of acupuncture,herbal medicine,diets and physical exercises.Traditional and complementary medicine is an important and often underestimated healthcare resource,especially in the prevention and treatment of autoimmune diseases of the nervous system.
文摘This paper provides an overview of autoimmune disorders of the central nervous system,specifically those caused by demyelination.We explore new research regarding potential therapeutic interventions,particularly those aimed at inducing remyelination.Remyelination is a detailed process,involving many cell types–oligodendrocyte precursor cells(OPCs),astrocytes,and microglia–and both the innate and adaptive immune systems.Our discussion of this process includes the differentiation potential of neural stem cells,the function of adult OPCs,and the impact of molecular mediators on myelin repair.Emerging therapies are also explored,with mechanisms of action including the induction of OPC differentiation,the transplantation of mesenchymal stem cells,and the use of molecular mediators.Further,we discuss current medical advancements in relation to many myelin-related disorders,including multiple sclerosis,optic neuritis,neuromyelitis optica spectrum disorder,myelin oligodendrocyte glycoprotein antibodyassociated disease,transverse myelitis,and acute disseminated encephalomyelitis.Beyond these emerging systemic therapies,we also introduce the dimethyl fumarate/silk fibroin nerve conduit and its potential role in the treatment of peripheral nerve injuries.Despite these aforementioned scientific advancements,this paper maintains the need for ongoing research to deepen our understanding of demyelinating diseases and advance therapeutic strategies that enhance affected patients’quality of life.
基金National Natural Science Foundation of China,No.81973398,No.81730103,No.81573507 and No.82020108031The National Key Research and Development Program,No.2017YFC0909300 and No.2016YFC0905001+5 种基金Guangdong Provincial Key Laboratory of Construction Foundation,No.2017B030314030 and No.2020B1212060034Science and Technology Program of Guangzhou,No.201607020031National Engineering and Technology Research Center for New Drug Druggability Evaluation(Seed Program of Guangdong Province),No.2017B090903004The 111 Project,No.B16047China Postdoctoral Science Foundation,No.2019M66324,No.2020M683140 and No.2020M683139Natural Science Foundation of Guangdong Province,No.2022A1515012549 and No.2023A1515012667.
文摘BACKGROUND Thalidomide is an effective treatment for refractory Crohn’s disease(CD).However,thalidomide-induced peripheral neuropathy(TiPN),which has a large individual variation,is a major cause of treatment failure.TiPN is rarely predictable and recognized,especially in CD.It is necessary to develop a risk model to predict TiPN occurrence.AIM To develop and compare a predictive model of TiPN using machine learning based on comprehensive clinical and genetic variables.METHODS A retrospective cohort of 164 CD patients from January 2016 to June 2022 was used to establish the model.The National Cancer Institute Common Toxicity Criteria Sensory Scale(version 4.0)was used to assess TiPN.With 18 clinical features and 150 genetic variables,five predictive models were established and evaluated by the confusion matrix receiver operating characteristic curve(AUROC),area under the precision-recall curve(AUPRC),specificity,sensitivity(recall rate),precision,accuracy,and F1 score.RESULTS The top-ranking five risk variables associated with TiPN were interleukin-12 rs1353248[P=0.0004,odds ratio(OR):8.983,95%confidence interval(CI):2.497-30.90],dose(mg/d,P=0.002),brainderived neurotrophic factor(BDNF)rs2030324(P=0.001,OR:3.164,95%CI:1.561-6.434),BDNF rs6265(P=0.001,OR:3.150,95%CI:1.546-6.073)and BDNF rs11030104(P=0.001,OR:3.091,95%CI:1.525-5.960).In the training set,gradient boosting decision tree(GBDT),extremely random trees(ET),random forest,logistic regression and extreme gradient boosting(XGBoost)obtained AUROC values>0.90 and AUPRC>0.87.Among these models,XGBoost and GBDT obtained the first two highest AUROC(0.90 and 1),AUPRC(0.98 and 1),accuracy(0.96 and 0.98),precision(0.90 and 0.95),F1 score(0.95 and 0.98),specificity(0.94 and 0.97),and sensitivity(1).In the validation set,XGBoost algorithm exhibited the best predictive performance with the highest specificity(0.857),accuracy(0.818),AUPRC(0.86)and AUROC(0.89).ET and GBDT obtained the highest sensitivity(1)and F1 score(0.8).Overall,compared with other state-of-the-art classifiers such as ET,GBDT and RF,XGBoost algorithm not only showed a more stable performance,but also yielded higher ROC-AUC and PRC-AUC scores,demonstrating its high accuracy in prediction of TiPN occurrence.CONCLUSION The powerful XGBoost algorithm accurately predicts TiPN using 18 clinical features and 14 genetic variables.With the ability to identify high-risk patients using single nucleotide polymorphisms,it offers a feasible option for improving thalidomide efficacy in CD patients.