期刊文献+
共找到1,497篇文章
< 1 2 75 >
每页显示 20 50 100
miRNA-21-5p is an important contributor to the promotion of injured peripheral nerve regeneration using hypoxia-pretreated bone marrow-derived neural crest cells 被引量:1
1
作者 Meng Cong Jing-Jing Hu +9 位作者 Yan Yu Xiao-Li Li Xiao-Ting Sun Li-Ting Wang Xia Wu Ling-Jie Zhu Xiao-Jia Yang Qian-Ru He Fei Ding Hai-Yan Shi 《Neural Regeneration Research》 SCIE CAS 2025年第1期277-290,共14页
Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep... Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine. 展开更多
关键词 AXOTOMY cell-free therapy conditioned medium extracellular vesicles hypoxic preconditioning microRNA oxygen-glucose deprivation peripheral nerve injury Schwann cell precursors
下载PDF
Multilevel analysis of the central-peripheral-target organ pathway:contributing to recovery after peripheral nerve injury
2
作者 Xizi Song Ruixin Li +6 位作者 Xiaolei Chu Qi Li Ruihua Li Qingwen Li Kai-Yu Tong Xiaosong Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS 2025年第10期2807-2822,共16页
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes... Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery. 展开更多
关键词 central nervous system central peripheral target organ multilevel pathological analysis nerve regeneration peripheral nerve injury peripheral nervous system target organs therapeutic approach
下载PDF
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
3
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration NEURON peripheral nerve injury sensory neurons
下载PDF
Autophagy-targeting modulation to promote peripheral nerve regeneration
4
作者 Yan Chen Hongxia Deng Nannan Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第7期1864-1882,共19页
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat... Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies. 展开更多
关键词 AUTOPHAGY autophagy related genes Charcot–Marie–Tooth diseases diabetic peripheral neuropathy METFORMIN MYELINATION peripheral nerve injury Schwann cells sciatic nerve Wallerian degeneration
下载PDF
Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury:state of the art and future perspectives
5
作者 Fatima Aldali Chunchu Deng +1 位作者 Mingbo Nie Hong Chen 《Neural Regeneration Research》 SCIE CAS 2025年第11期3151-3171,共21页
“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health pro... “Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions. 展开更多
关键词 clinical trials EXOSOME extracellular vesicles mesenchymal stem cells nerve regeneration peripheral nerve injury pre-clinical experiments
下载PDF
Peripheral blood RNA biomarkers can predict lesion severity in degenerative cervical myelopathy
6
作者 Zhenzhong Zheng Jialin Chen +5 位作者 Jinghong Xu Bin Jiang Lei Li Yawei Li Yuliang Dai Bing Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1764-1775,共12页
Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological bi... Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy. 展开更多
关键词 biomarkers candidate genes degenerative cervical myelopathy gene expression analysis immune cell types neurological disabilities peripheral blood RNA profiles spinal cord injury
下载PDF
Crosstalk among mitophagy,pyroptosis,ferroptosis,and necroptosis in central nervous system injuries 被引量:1
7
作者 Li Zhang Zhigang Hu +1 位作者 Zhenxing Li Yixing Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1660-1670,共11页
Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and... Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients. 展开更多
关键词 central nervous system injuries death pyroptosis ferroptosis inflammation MITOPHAGY NECROPTOSIS programmed cell
下载PDF
Factors predicting sensory and motor recovery after the repair of upper limb peripheral nerve injuries 被引量:12
8
作者 Bo He Zhaowei Zhu +6 位作者 Qingtang Zhu Xiang Zhou Canbin Zheng Pengliang Li Shuang Zhu Xiaolin Liu Jiakai Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第6期661-672,共12页
OBJECTIVE: To investigate the factors associated with sensory and motor recovery after the repair of upper limb peripheral nerve injuries. DATA SOURCES: The online PubMed database was searched for English articles d... OBJECTIVE: To investigate the factors associated with sensory and motor recovery after the repair of upper limb peripheral nerve injuries. DATA SOURCES: The online PubMed database was searched for English articles describing outcomes after the repair of median, ulnar, radial, and digital nerve injuries in humans with a publication date between 1 January 1990 and 16 February 2011. STUDY SELECTION: The following types of article were selected: (1) clinical trials describ- ing the repair of median, ulnar, radial, and digital nerve injuries published in English; and (2) studies that reported sufficient patient information, including age, mechanism of injury, nerve injured, injury location, defect length, repair time, repair method, and repair materials. SPSS 13.0 software was used to perform univariate and multivariate logistic regression analyses and to in- vestigate the patient and intervention factors associated with outcomes. MAIN OUTCOME MEASURES: Sensory function was assessed using the Mackinnon-Dellon scale and motor function was assessed using the manual muscle test. Satisfactory motor recovery was defined as grade M4 or M5, and satisfactory sensory recovery was defined as grade S3+ or S4. RESULTS: Seventy-one articles were included in this study. Univariate and multivariate logistic regression analyses showed that repair time, repair materials, and nerve injured were inde- pendent predictors of outcome after the repair of nerve injuries (P 〈 0.05), and that the nerve injured was the main factor affecting the rate of good to excellent recovery. CONCLUSION: Predictors of outcome after the repair of peripheral nerve injuries include age, gender, repair time, repair materials, nerve injured, defect length, and duration of follow-up. 展开更多
关键词 nerve regeneration peripheral nerve injury outcome predictors nerve repair upperlimb univariate analysis PROGNOSIS 863 Program neural regeneration
下载PDF
An update–tissue engineered nerve grafts for the repair of peripheral nerve injuries 被引量:12
9
作者 Nitesh P.Patel Kristopher A.Lyon Jason H.Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期764-774,共11页
Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage,... Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts(ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts(TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems(DDS), co-administration of platelet-rich plasma(PRP), and pretreatment with chondroitinase ABC(Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix(ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia(DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed. 展开更多
关键词 peripheral nerve injury peripheral nerve repair tissue engineered nerve graft nerve conduit stem cells Schwann cells dorsal root ganglia neurons axon stretch-growth autologous tissue graft
下载PDF
Repair and regeneration of peripheral nerve injuries that ablate branch points 被引量:2
10
作者 JuliAnne E.Allgood George D.Bittner Jared S.Bushman 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2564-2568,共5页
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS h... The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses:(1) the branched anatomy of the peripheral nervous system,(2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed,(3) factors known to influence regeneration through branched nerve structures,(4) techniques and models of branched peripheral nerve injuries in animal models, and(5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system. 展开更多
关键词 ALLOGRAFT animal model branched injuries femoral nerve peripheral nerve injury peripheral nervous system REGENERATION REPAIR sciatic nerve surgical repair
下载PDF
Follow-up evaluation with ultrasonography of peripheral nerve injuries after an earthquake 被引量:1
11
作者 Man Lu Yue Wang +7 位作者 Linxian Yue Jack Chiu Fanding He Xiaojing Wu Bin Zang Bin Lu Xiaoke Yao Zirui Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第6期582-588,共7页
Published data on earthquake-associated peripheral nerve injury is very limited. Ultrasonography has been proven to be efficient in the clinic to diagnose peripheral nerve injury. The aim of this study was to assess t... Published data on earthquake-associated peripheral nerve injury is very limited. Ultrasonography has been proven to be efficient in the clinic to diagnose peripheral nerve injury. The aim of this study was to assess the role of ultrasound in the evaluation of persistent peripheral nerve injuries 1 year after the Wenchuan earthquake. Thirty-four patients with persistent clinical symptoms and neurologic signs of impaired nerve function were evaluated with sonography prior to surgi- cal repair. Among 34 patients, ultrasonography showed that 48 peripheral nerves were entrapped, and 11 peripheral nerves were disrupted. There was one case of misdiagnosis on ultrasonogra- phy. The concordance rate of ultrasonographic findings with those of surgical findings was 98%. A total of 48 involved nerves underwent neurolysis and the symptoms resolved. Only five nerves had scar tissue entrapment. Preoperative and postoperative clinical and ultrasonographic results were concordant, which verified that ultrasonography is useful for preoperative diagnosis and postoperative evaluation of injured peripheral nerves. 展开更多
关键词 nerve regeneration EARTHQUAKE WENCHUAN ultrasound peripheral nerve nerve injury repair FOLLOW-UP 863 Program neural regeneration
下载PDF
GDNF to the rescue:GDNF delivery effects on motor neurons and nerves,and muscle re-innervation after peripheral nerve injuries 被引量:9
12
作者 Alberto F.Cintrón-Colón Gabriel Almeida-Alves +1 位作者 Juliana M.VanGyseghem John M.Spitsbergen 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期748-753,共6页
Peripheral nerve injuries commonly occur due to trauma,like a traffic accident.Peripheral nerves get severed,causing motor neuron death and potential muscle atrophy.The current golden standard to treat peripheral nerv... Peripheral nerve injuries commonly occur due to trauma,like a traffic accident.Peripheral nerves get severed,causing motor neuron death and potential muscle atrophy.The current golden standard to treat peripheral nerve lesions,especially lesions with large(≥3 cm)nerve gaps,is the use of a nerve autograft or reimplantation in cases where nerve root avulsions occur.If not tended early,degeneration of motor neurons and loss of axon regeneration can occur,leading to loss of function.Although surgical procedures exist,patients often do not fully recover,and quality of life deteriorates.Peripheral nerves have limited regeneration,and it is usually mediated by Schwann cells and neurotrophic factors,like glial cell line-derived neurotrophic factor,as seen in Wallerian degeneration.Glial cell line-derived neurotrophic factor is a neurotrophic factor known to promote motor neuron survival and neurite outgrowth.Glial cell line-derived neurotrophic factor is upregulated in different forms of nerve injuries like axotomy,sciatic nerve crush,and compression,thus creating great interest to explore this protein as a potential treatment for peripheral nerve injuries.Exogenous glial cell line-derived neurotrophic factor has shown positive effects in regeneration and functional recovery when applied in experimental models of peripheral nerve injuries.In this review,we discuss the mechanism of repair provided by Schwann cells and upregulation of glial cell line-derived neurotrophic factor,the latest findings on the effects of glial cell line-derived neurotrophic factor in different types of peripheral nerve injuries,delivery systems,and complementary treatments(electrical muscle stimulation and exercise).Understanding and overcoming the challenges of proper timing and glial cell line-derived neurotrophic factor delivery is paramount to creating novel treatments to tend to peripheral nerve injuries to improve patients'quality of life. 展开更多
关键词 electrical muscle stimulation exercise glial cell line-derived neurotrophic factor glial cell line-derived neurotrophic factor delivery motor neuron nerve gap neurotrophic factor peripheral nerve injury Schwann cells skeletal muscle atrophy
下载PDF
A 2-year follow-up survey of 523 cases with peripheral nerve injuries caused by the earthquake in Wenchuan, China 被引量:1
13
作者 Chun-qing He Li-hai Zhang +1 位作者 Xian-fei Liu Pei-fu Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第2期252-259,共8页
We performed a 2-year follow-up survey of 523 patients with peripheral nerve injuries caused by the earthquake in Wenchuan, Sichuan Province, China. Nerve injuries were classiifed into three types: type I injuries we... We performed a 2-year follow-up survey of 523 patients with peripheral nerve injuries caused by the earthquake in Wenchuan, Sichuan Province, China. Nerve injuries were classiifed into three types: type I injuries were nerve transection injuries, type II injuries were nerve compression injuries, and type III injuries displayed no direct neurological dysfunction due to trauma. In this study, 31 patients had type I injuries involving 41 nerves, 419 had type II injuries involving 823 nerves, and 73 had type III injuries involving 150 nerves. Twenty-two patients had open tran-section nerve injury. The restoration of peripheral nerve function after different treatments was evaluated. Surgical decompression favorably affected nerve recovery. Physiotherapy was effective for type I and type II nerve injuries, but not substantially for type III nerve injury. Pharmaco-therapy had little effect on type II or type III nerve injuries. Targeted decompression surgery and physiotherapy contributed to the effective treatment of nerve transection and compression injuries. The Louisiana State University Health Sciences Center score for nerve injury severity de-clined with increasing duration of being trapped. In the ifrst year after treatment, the Louisiana State University Health Sciences Center score for grades 3 to 5 nerve injury increased by 28.2% to 81.8%. If scores were still poor (0 or 1) after a 1-year period of treatment, further treatment was not effective. 展开更多
关键词 nerve regeneration EARTHQUAKE peripheral nerve injury LSUHSC score compartment syndrome surgery therapy PHYSIOTHERAPY nerve decompression neural regeneration
下载PDF
Effect of low-frequency pulse percutaneous electric stimulation on peripheral nerve injuries at different sites 被引量:1
14
作者 Jinwu Wang Liye Chen +4 位作者 Qi Li Weifeng Ni Min Zhang Shangchun Guo Bingfang Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第3期253-255,共3页
BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can no... BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury. 展开更多
关键词 Effect of low-frequency pulse percutaneous electric stimulation on peripheral nerve injuries at different sites
下载PDF
Evaluating nerve guidance conduits for peripheral nerve injuries:a novel normalization method
15
作者 Munish B.Shah Wei Chang Xiaojun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1959-1960,共2页
The peripheral nervous system (PNS) is composed of the nerves and ganglia outside of the brain and spinal cord whose primary function is to connect the central nervous system to the limbs and organs. A peripheral ne... The peripheral nervous system (PNS) is composed of the nerves and ganglia outside of the brain and spinal cord whose primary function is to connect the central nervous system to the limbs and organs. A peripheral nerve injury (PNI) is damage to the nerves and/or its surrounding tissue. These injuries can affect up to 5% of patients that are hospitalized for trauma (Taylor et al., 2008) and over 50,000 surgical repair procedures are performed annually in the United States alone (Evans, 2001). 展开更多
关键词 RRR Evaluating nerve guidance conduits for peripheral nerve injuries NGC PNI
下载PDF
Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy 被引量:5
16
作者 Yaowei Lv Xiangyun Yao +3 位作者 Xiao Li Yuanming Ouyang Cunyi Fan Yun Qian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期598-605,共8页
Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diab... Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways. 展开更多
关键词 cell metabolism diabetic peripheral neuropathy peripheral nerve injury protein kinase C pathway reactive oxygen species.
下载PDF
Neutrophil peptide 1 accelerates the clearance of degenerative axons during Wallerian degeneration by activating macrophages after peripheral nerve crush injury 被引量:3
17
作者 Yuhui Kou Yusong Yuan +3 位作者 Qicheng Li Wenyong Xie Hailin Xu Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1822-1827,共6页
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ... Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration. 展开更多
关键词 axonal debris inflammatory factors MACROPHAGES neutrophil peptide 1 peripheral nerve injury peripheral nerve regeneration RAW 264.7 cells sciatic nerve Wallerian degeneration
下载PDF
Role of transforming growth factor-βin peripheral nerve regeneration 被引量:4
18
作者 Zihan Ding Maorong Jiang +4 位作者 Jiaxi Qian Dandan Gu Huiyuan Bai Min Cai Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期380-386,共7页
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to... Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications. 展开更多
关键词 MYELINATION nerve repair and regeneration NEURITE NEUROINFLAMMATION peripheral nerve injury Schwann cell transforming growth factor-β Wallerian degeneration
下载PDF
Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination 被引量:2
19
作者 Rong Hu Xinpeng Dun +1 位作者 Lolita Singh Matthew C.Banton 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1575-1583,共9页
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical... Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury. 展开更多
关键词 macrophage clearance MIGRATION peripheral nerve injury regeneration re-myelination RUNX2 Schwann cells
下载PDF
Mild hypothermia as a treatment for central nervous system injuries Positive or negative effects? 被引量:25
20
作者 Rami Darwazeh Yi Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第28期2677-2686,共10页
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida- tive stress, excitotoxi... Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida- tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high in- tracranial pressure following traumatic brain injuries in adults. It is a new treatment that increases survival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical pro- duction, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system damage. Although a series of pathological and physiological changes as well as potential side ef- fects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study. 展开更多
关键词 neural regeneration REVIEWS brain injury spinal cord injury central nervous system injury mildhypothermia therapeutic hypothermia traumatic brain injury NEUROREGENERATION
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部