The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
Fluid mechanical peristaltic transport through esophagus is studied in the paper. A mathematical model has been developed to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube le...Fluid mechanical peristaltic transport through esophagus is studied in the paper. A mathematical model has been developed to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of a viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed specifically to explore some important information concerning the movement of food bolus through esophagus. The analysis is carried out by using the lubrication theory. The study is particularly suitable for the cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes place by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocities, particle trajectory, and reflux is investigated for a single wave as well as a train of periodic peristaltic waves. The locally variable pressure is seen to be highly sensitive to the flow index "n". The study clearly shows that continuous fluid transport for Newtonian/rheological fluids by wave train propagation is more effective than widely spaced single wave propagation in the case of peristaltic movement of food bolus in the esophagus.展开更多
Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that p...Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that provides peristaltic transport. We utilized Drosophila melanogaster larvae that express channelrhodopsin-2 (ChR2) on the cell membrane of skeletal muscles to obtain light-responsive muscle tissues. The larvae were forced to contract with blue light stimulation. While changing the speed of the propagating light stimulation, we observed displacement on the surface of the contractile muscle tissues. We obtained peristaltic pumps from the larvae by dissecting them into tubular structures. The average inner diameter of the tubular structures was about 400 lm and the average outer diameter was about 750 lm. Contractions of this tubular structure could be controlled with the same blue light stimulation. To make the inner flow visible, we placed microbeads into the peristaltic pump, and thus determined that the pump could transport microbeads at a speed of 120 lm-s1.展开更多
In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long waveleng...In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long wavelength approximation by using a regular perturbation method. Explicit expressions of solutions for the stream function, the velocity, the pressure gradient, the temperature, and the heat transfer coefficient are presented. Pumping and trapping phenomena are analyzed for increasing the slip parameter. Further, the temperature profiles and the heat transfer coefficient are observed for various increasing parameters. It is found that these parameters considerably affect the considered flow characteristics. Comparisons with published results for the no-slip case are found in close agreement.展开更多
In the present investigation we have studied the peristaltic flow of a nanofluid in an endoscope. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Analytical solutions have bee...In the present investigation we have studied the peristaltic flow of a nanofluid in an endoscope. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Analytical solutions have been calculated using Homotopy perturbation method (HPM) for temperature and nanoparticle equation while exact solutions have been calculated for velocity and pressure gradient. Numerical integration have been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated for five different peristaltic waves. Streamlines have been plotted at the end of the article.展开更多
This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the ...This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the fourth grade nanofluids is provided along with thermal and concentration convection.The Lubrication method is used to simplify the partial differential equations which are tremendously nonlinear.Further,analytical technique is applied to solve the differential equations that are strongly nonlinear in nature,and exact solutions of temperature,volume fraction of nanoparticles,and concentration are studied.Numerical and graphical findings manifest the influence of various physical flow-quantity parameters.It is observed that the nanoparticle fraction decreases because of the increasing values of Brownian motion parameter and Dufour parameter,whereas the behaviour of nanoparticle fraction is quite opposite for thermophoresis parameter.It is also noted that the temperature profile decreases with increasing Brownian motion parameter values and rises with Dufour parameter values.Moreover,the concentration profile ascends with increasing thermophoresis parameter and Soret parameter values.展开更多
The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are conside...The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.展开更多
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from Polydimethylsiloxane (PDMS) material. The first laye...This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from Polydimethylsiloxane (PDMS) material. The first layer has a rectangular channel and two valve seals. Three rectangular mini lightweight piezo-composite actuators are integrated in the second layer, and used as actuation parts. Two layers are bonded, and covered by two Polymethyl Methacrylate (PMMA) plates, which help increase the stiffness of the micropump. A maximum flow rate of 900μL.min 1 and a maximum backpressure of 1.8 kPa are recorded when water is used as pump liquid. We measured the power consumption of the micropump. The micropump is found to be a promising candidate for bio-medical application due to its bio-compatibility, portability, bidirectionality, and simple effective design.展开更多
This paper analytically investigates the unsteady peristaltic transport of the Maxwell fluid in a finite tube. The walls of the tube are subjected to the contraction waves that do not cross the stationary boundaries. ...This paper analytically investigates the unsteady peristaltic transport of the Maxwell fluid in a finite tube. The walls of the tube are subjected to the contraction waves that do not cross the stationary boundaries. The analysis is carried out by a long wavelength approximation in the non-dimensional form. The expressions for the axial and radial velocities are derived. The pressures across the wavelength and the tubelength are also estimated. The reflux phenomenon is discussed, which culminates into the determination of the reflux limit. Mathematical formulations are physically interpreted for the flow of masticated food materials such as bread and white eggs in the oesophagus. It is revealed that the Maxwell fluids are favorable to flow in the oesophagus as compared with the Newtonian fluids. This endorses the experimental finding of Takahashi et al. (Takahashi, T., Ogoshi, H., Miyamoto, K., and Yao, M. L. Viscoelastic properties of commercial plain yoghurts and trial foods for swallowing disorders. Rheology, 27, 169- 172 (1999)). It is further revealed that the relaxation time does not affect the shear stress and the reflux limit. It is found that the pressure peaks are identical in the integral case while different in the non-integral case.展开更多
The peristaltic pumping of a viscous compressible liquid mixed with rigid spherical particles of the same size in a channel is theoretically investigated. The momentum equations for the compressible flow are solved wi...The peristaltic pumping of a viscous compressible liquid mixed with rigid spherical particles of the same size in a channel is theoretically investigated. The momentum equations for the compressible flow are solved with a perturbation analysis. The analysis is carried out by duly accounting for the nonlinear convective acceleration terms for the fluid part on the wavy wall. The zeroth-order terms yield the Poiseuille flow, and the first-order terms give the Orr-Sommerfeld equation. The explicit expression for the net axial velocity is derived. The effects of the embedded parameters on the axial fluid velocity are studied through different engineering applications. The features of the flow characteristics are analyzed and discussed in detail. The obtained results are evaluated for various parameters associated with the blood flow in the blood vessels with diameters less than 5 500 μm, whereas the particle diameter has been taken to be 8 μm. This study provides a scope to evaluate the effect of the theory of two-phase flow characteristics with compressible fluid problems, and is helpful for understanding the role of engineering applications of pumping solid-fluid mixture by peristaltically driven motion.展开更多
The present investigation studies the peristaltic flow of the Jeffrey fluid through a tube of finite length. The fluid is electrically conducting in the presence of an applied magnetic field. Analysis is carried out u...The present investigation studies the peristaltic flow of the Jeffrey fluid through a tube of finite length. The fluid is electrically conducting in the presence of an applied magnetic field. Analysis is carried out under the assumption of long wavelength and low Reynolds number approximations. Expressions of the pressure gradient, volume flow rate, average volume flow rate, and local wall shear stress are obtained. The effects of relaxation time, retardation time, Hartman number on pressure, local wall shear stress, and mechanical efficiency of peristaltic pump are studied. The reflux phenomenon is also investigated. The case of propagation of a non-integral number of waves along the tube walls, which are inherent characteristics of finite length vessels, is also examined.展开更多
We have analyzed an incompressible Sisko fluid through an axisymmetric uniform tube with a sinusoidal wave propagating down its walls. The present analysis of non- Newtonian fluid is investigated under the considerati...We have analyzed an incompressible Sisko fluid through an axisymmetric uniform tube with a sinusoidal wave propagating down its walls. The present analysis of non- Newtonian fluid is investigated under the considerations of long wavelength and low Reynolds number approximation. The analytic solution is obtained using (i) the regular perturbation method (ii) the Homotopy analysis method (HAM). The comparison of both the solutions is presented graphically. The results for the pressure rise, frictional force and pressure gradient have been calculated numerically and the results are studied for various values of the physical parameters of interest, such as α (angle of inclination), b^* (Sisko fluid parameter), Ф (amplitude ratio) and n (power law index). Trapping phenomena is discussed at the end of the article.展开更多
In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material ...In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.展开更多
The erythrocyte and blood flowing in the blood vessel can be treated as the two-phase flow of the mixture of particles and a power-law fluid in a peristaltic tube.In the present work, the peristaltic transport of a po...The erythrocyte and blood flowing in the blood vessel can be treated as the two-phase flow of the mixture of particles and a power-law fluid in a peristaltic tube.In the present work, the peristaltic transport of a power-law fluid and the suspension of particles in a tube is investigated by a perturbation method using the long wavelength approximation. The influence of different parameters on the velocity profile and streamlines is explored. Results show that there is a deflection of the flow field when the power-law index n = 0.5 or 1.5 compared with the Newtonian fluid where the trapping zone is symmetric to a certain cross section. The flux rate and reflux of the material are identified,and the conditions under which the reflux appears are determined. Moreover, a reflux phenomenon occurs near the wall. The trapping zone is related to not only the tube geometry and the flow flux but also the fluid properties. Both the length and width of the trapping zone increase with an increase in θ or φ. The trapping zone is more difficult to produce in the shear-thinning fluid than the shear-thickening fluid.展开更多
Peristalsis of Carreau-Yasuda fluid is investigated. Analysis is carried out in the presence of velocity slip and convective boundary conditions. Thermal conductivity of the fluid is taken to be temperature dependent....Peristalsis of Carreau-Yasuda fluid is investigated. Analysis is carried out in the presence of velocity slip and convective boundary conditions. Thermal conductivity of the fluid is taken to be temperature dependent. Lubrication analysis is used in the formulation of the problem. Resulting nonlinear system of equations is solved numerically. Impact of embedded parameters on the quantities of interest is examined through graphs and tables. Comparison of the behavior of the Carreau-Yasuda, Carreau and Newtonian fluid models is presented. Results show that the heat transfer rate at the wall for the Carreau fluid model is large when compared with the Newtonian or the Carreau-Yasuda fluid model. Also the heat transfer rate at the wall decreases with increase in the velocity slip and variable thermal conductivity parameters. Further, an increase in the Biot number reduces the fluid temperature by a considerable amount.展开更多
This paper studies the Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of the slip boundary condition. The motion of the wall is governed by the sinusoidal wave e...This paper studies the Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of the slip boundary condition. The motion of the wall is governed by the sinusoidal wave equation. The analytical and numerical solutions for the axial velocity, the micro-polar vector, the stream function, the pressure gradient, the friction force, and the mechanical efficiency are obtained by using the lu- brication theory under the low Reynolds number and long wavelength approximations. The impacts of the emerging parameters, such as the coupling number, the micro-polar parameter, the slip parameter on pumping characteristics, the friction force, the velocity profile, the mechanical efficiency, and the trapping phenomenon are depicted graphically. The numerical results infer that large pressure is required for peristaltic pumping when the coupling number is large, while opposite behaviors are found for the micro-polar parameter and the slip parameter. The size of the trapped bolus reduces with the increase in the coupling number and the micro-polar parameter, whereas it blows up with the increase in the slip parameter.展开更多
Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The ...Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The asynchronous and the duty cycle pulsed actuation modes were proposed and tested. The velocity fields induced by multiple DBD plasma actuators with different phase angles and duty cycle ratios were acquired and the momentum transfer characteristics of the flow field were discussed. Consequently, the mechanism of the peristalsis-acceleration multi- ple DBD plasma actuation was analyzed. The results show that the peristaltic flow acceleration effect of multiple plasma actuators occurs mainly in paraelectric direction, and the mechanism of peristaltic flow acceleration is ejection pushing effect rather than injection pumping effect. The asynchronous and the duty cycle pulsed actuation modes can, with energy consumption increase of merely 10%, achieve 65% and 42% increase of downstream velocity, and thus are promising in velocity improvement and energy saving.展开更多
The peristaltic flow of a Walter's B fluid in an endoscope is studied. The problem is modeled in a cylindrical coordinate system. The main theme of the present analysis is to study the endoscopic effects on the peris...The peristaltic flow of a Walter's B fluid in an endoscope is studied. The problem is modeled in a cylindrical coordinate system. The main theme of the present analysis is to study the endoscopic effects on the peristaltic flow of the Waiter's B fluid. To the best of the authors' knowledge, no investigation has been made so far in the literatures to study the Walter's B fluid in an endoscope. Analytical solutions axe obtained using the regular perturbation method by taking 5 as a perturbation parameter. The approximate analytical solutions for the pressure rise and friction forces are evaluated using numerical integration. The effects of emerging parameters of the Waiter's B fluid are presented graphically.展开更多
In the present study, we discuss the peristaltic flow of a Johnson-Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative st...In the present study, we discuss the peristaltic flow of a Johnson-Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson-Segalman fluid.展开更多
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金the Council of Scientific and Industrial Research (CSIR) of New Delhi for awarding him a scientific research fund
文摘Fluid mechanical peristaltic transport through esophagus is studied in the paper. A mathematical model has been developed to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of a viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed specifically to explore some important information concerning the movement of food bolus through esophagus. The analysis is carried out by using the lubrication theory. The study is particularly suitable for the cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes place by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocities, particle trajectory, and reflux is investigated for a single wave as well as a train of periodic peristaltic waves. The locally variable pressure is seen to be highly sensitive to the flow index "n". The study clearly shows that continuous fluid transport for Newtonian/rheological fluids by wave train propagation is more effective than widely spaced single wave propagation in the case of peristaltic movement of food bolus in the esophagus.
基金supported by Grant-in-Aid for Japan Society for the Promotion of Science(JSPS)Fellow(17J01742)JSPS,MEXT KAKENHI(21676002,23111705,26249027,and 17H01254)the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization(NEDO)of Japan
文摘Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that provides peristaltic transport. We utilized Drosophila melanogaster larvae that express channelrhodopsin-2 (ChR2) on the cell membrane of skeletal muscles to obtain light-responsive muscle tissues. The larvae were forced to contract with blue light stimulation. While changing the speed of the propagating light stimulation, we observed displacement on the surface of the contractile muscle tissues. We obtained peristaltic pumps from the larvae by dissecting them into tubular structures. The average inner diameter of the tubular structures was about 400 lm and the average outer diameter was about 750 lm. Contractions of this tubular structure could be controlled with the same blue light stimulation. To make the inner flow visible, we placed microbeads into the peristaltic pump, and thus determined that the pump could transport microbeads at a speed of 120 lm-s1.
基金supported by the Ministry of Higher Education (MOHE)the Research Management Centre, UTM (Nos. 03J54, 78528, and 4F109)
文摘In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long wavelength approximation by using a regular perturbation method. Explicit expressions of solutions for the stream function, the velocity, the pressure gradient, the temperature, and the heat transfer coefficient are presented. Pumping and trapping phenomena are analyzed for increasing the slip parameter. Further, the temperature profiles and the heat transfer coefficient are observed for various increasing parameters. It is found that these parameters considerably affect the considered flow characteristics. Comparisons with published results for the no-slip case are found in close agreement.
基金the Higer Education Commission of Pakistan for providing research grant
文摘In the present investigation we have studied the peristaltic flow of a nanofluid in an endoscope. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Analytical solutions have been calculated using Homotopy perturbation method (HPM) for temperature and nanoparticle equation while exact solutions have been calculated for velocity and pressure gradient. Numerical integration have been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated for five different peristaltic waves. Streamlines have been plotted at the end of the article.
文摘This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the fourth grade nanofluids is provided along with thermal and concentration convection.The Lubrication method is used to simplify the partial differential equations which are tremendously nonlinear.Further,analytical technique is applied to solve the differential equations that are strongly nonlinear in nature,and exact solutions of temperature,volume fraction of nanoparticles,and concentration are studied.Numerical and graphical findings manifest the influence of various physical flow-quantity parameters.It is observed that the nanoparticle fraction decreases because of the increasing values of Brownian motion parameter and Dufour parameter,whereas the behaviour of nanoparticle fraction is quite opposite for thermophoresis parameter.It is also noted that the temperature profile decreases with increasing Brownian motion parameter values and rises with Dufour parameter values.Moreover,the concentration profile ascends with increasing thermophoresis parameter and Soret parameter values.
基金support from Higher Education Commission (HEC) of Pakistan through Ph.D Indigeous Scheme.
文摘The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.
文摘This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from Polydimethylsiloxane (PDMS) material. The first layer has a rectangular channel and two valve seals. Three rectangular mini lightweight piezo-composite actuators are integrated in the second layer, and used as actuation parts. Two layers are bonded, and covered by two Polymethyl Methacrylate (PMMA) plates, which help increase the stiffness of the micropump. A maximum flow rate of 900μL.min 1 and a maximum backpressure of 1.8 kPa are recorded when water is used as pump liquid. We measured the power consumption of the micropump. The micropump is found to be a promising candidate for bio-medical application due to its bio-compatibility, portability, bidirectionality, and simple effective design.
文摘This paper analytically investigates the unsteady peristaltic transport of the Maxwell fluid in a finite tube. The walls of the tube are subjected to the contraction waves that do not cross the stationary boundaries. The analysis is carried out by a long wavelength approximation in the non-dimensional form. The expressions for the axial and radial velocities are derived. The pressures across the wavelength and the tubelength are also estimated. The reflux phenomenon is discussed, which culminates into the determination of the reflux limit. Mathematical formulations are physically interpreted for the flow of masticated food materials such as bread and white eggs in the oesophagus. It is revealed that the Maxwell fluids are favorable to flow in the oesophagus as compared with the Newtonian fluids. This endorses the experimental finding of Takahashi et al. (Takahashi, T., Ogoshi, H., Miyamoto, K., and Yao, M. L. Viscoelastic properties of commercial plain yoghurts and trial foods for swallowing disorders. Rheology, 27, 169- 172 (1999)). It is further revealed that the relaxation time does not affect the shear stress and the reflux limit. It is found that the pressure peaks are identical in the integral case while different in the non-integral case.
文摘The peristaltic pumping of a viscous compressible liquid mixed with rigid spherical particles of the same size in a channel is theoretically investigated. The momentum equations for the compressible flow are solved with a perturbation analysis. The analysis is carried out by duly accounting for the nonlinear convective acceleration terms for the fluid part on the wavy wall. The zeroth-order terms yield the Poiseuille flow, and the first-order terms give the Orr-Sommerfeld equation. The explicit expression for the net axial velocity is derived. The effects of the embedded parameters on the axial fluid velocity are studied through different engineering applications. The features of the flow characteristics are analyzed and discussed in detail. The obtained results are evaluated for various parameters associated with the blood flow in the blood vessels with diameters less than 5 500 μm, whereas the particle diameter has been taken to be 8 μm. This study provides a scope to evaluate the effect of the theory of two-phase flow characteristics with compressible fluid problems, and is helpful for understanding the role of engineering applications of pumping solid-fluid mixture by peristaltically driven motion.
基金supported by the Visiting Professor Programming of King Sand University(No.KSU-VPP-117)
文摘The present investigation studies the peristaltic flow of the Jeffrey fluid through a tube of finite length. The fluid is electrically conducting in the presence of an applied magnetic field. Analysis is carried out under the assumption of long wavelength and low Reynolds number approximations. Expressions of the pressure gradient, volume flow rate, average volume flow rate, and local wall shear stress are obtained. The effects of relaxation time, retardation time, Hartman number on pressure, local wall shear stress, and mechanical efficiency of peristaltic pump are studied. The reflux phenomenon is also investigated. The case of propagation of a non-integral number of waves along the tube walls, which are inherent characteristics of finite length vessels, is also examined.
文摘We have analyzed an incompressible Sisko fluid through an axisymmetric uniform tube with a sinusoidal wave propagating down its walls. The present analysis of non- Newtonian fluid is investigated under the considerations of long wavelength and low Reynolds number approximation. The analytic solution is obtained using (i) the regular perturbation method (ii) the Homotopy analysis method (HAM). The comparison of both the solutions is presented graphically. The results for the pressure rise, frictional force and pressure gradient have been calculated numerically and the results are studied for various values of the physical parameters of interest, such as α (angle of inclination), b^* (Sisko fluid parameter), Ф (amplitude ratio) and n (power law index). Trapping phenomena is discussed at the end of the article.
文摘In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.
基金supported by the Major Program of National Natural Science Foundation of China(Nos.11632016 and 91634103)
文摘The erythrocyte and blood flowing in the blood vessel can be treated as the two-phase flow of the mixture of particles and a power-law fluid in a peristaltic tube.In the present work, the peristaltic transport of a power-law fluid and the suspension of particles in a tube is investigated by a perturbation method using the long wavelength approximation. The influence of different parameters on the velocity profile and streamlines is explored. Results show that there is a deflection of the flow field when the power-law index n = 0.5 or 1.5 compared with the Newtonian fluid where the trapping zone is symmetric to a certain cross section. The flux rate and reflux of the material are identified,and the conditions under which the reflux appears are determined. Moreover, a reflux phenomenon occurs near the wall. The trapping zone is related to not only the tube geometry and the flow flux but also the fluid properties. Both the length and width of the trapping zone increase with an increase in θ or φ. The trapping zone is more difficult to produce in the shear-thinning fluid than the shear-thickening fluid.
文摘Peristalsis of Carreau-Yasuda fluid is investigated. Analysis is carried out in the presence of velocity slip and convective boundary conditions. Thermal conductivity of the fluid is taken to be temperature dependent. Lubrication analysis is used in the formulation of the problem. Resulting nonlinear system of equations is solved numerically. Impact of embedded parameters on the quantities of interest is examined through graphs and tables. Comparison of the behavior of the Carreau-Yasuda, Carreau and Newtonian fluid models is presented. Results show that the heat transfer rate at the wall for the Carreau fluid model is large when compared with the Newtonian or the Carreau-Yasuda fluid model. Also the heat transfer rate at the wall decreases with increase in the velocity slip and variable thermal conductivity parameters. Further, an increase in the Biot number reduces the fluid temperature by a considerable amount.
文摘This paper studies the Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of the slip boundary condition. The motion of the wall is governed by the sinusoidal wave equation. The analytical and numerical solutions for the axial velocity, the micro-polar vector, the stream function, the pressure gradient, the friction force, and the mechanical efficiency are obtained by using the lu- brication theory under the low Reynolds number and long wavelength approximations. The impacts of the emerging parameters, such as the coupling number, the micro-polar parameter, the slip parameter on pumping characteristics, the friction force, the velocity profile, the mechanical efficiency, and the trapping phenomenon are depicted graphically. The numerical results infer that large pressure is required for peristaltic pumping when the coupling number is large, while opposite behaviors are found for the micro-polar parameter and the slip parameter. The size of the trapped bolus reduces with the increase in the coupling number and the micro-polar parameter, whereas it blows up with the increase in the slip parameter.
基金supported by National Natural Science Foundation of China(No.51107101)the Foundation for Fundamental Research of the Northwestern Polytechnical University of China(JC201103)
文摘Using a plexiglas plate model, the performance of peristaltic flow acceleration in- duced by multiple DBD (dielectric barrier discharge) plasma actuators was studied based on PIV (particle image velocimetry). The asynchronous and the duty cycle pulsed actuation modes were proposed and tested. The velocity fields induced by multiple DBD plasma actuators with different phase angles and duty cycle ratios were acquired and the momentum transfer characteristics of the flow field were discussed. Consequently, the mechanism of the peristalsis-acceleration multi- ple DBD plasma actuation was analyzed. The results show that the peristaltic flow acceleration effect of multiple plasma actuators occurs mainly in paraelectric direction, and the mechanism of peristaltic flow acceleration is ejection pushing effect rather than injection pumping effect. The asynchronous and the duty cycle pulsed actuation modes can, with energy consumption increase of merely 10%, achieve 65% and 42% increase of downstream velocity, and thus are promising in velocity improvement and energy saving.
基金Project supported by the Visiting Professor Programming of King Saud University (No. KSU-VPP-117)
文摘The peristaltic flow of a Walter's B fluid in an endoscope is studied. The problem is modeled in a cylindrical coordinate system. The main theme of the present analysis is to study the endoscopic effects on the peristaltic flow of the Waiter's B fluid. To the best of the authors' knowledge, no investigation has been made so far in the literatures to study the Walter's B fluid in an endoscope. Analytical solutions axe obtained using the regular perturbation method by taking 5 as a perturbation parameter. The approximate analytical solutions for the pressure rise and friction forces are evaluated using numerical integration. The effects of emerging parameters of the Waiter's B fluid are presented graphically.
文摘In the present study, we discuss the peristaltic flow of a Johnson-Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson-Segalman fluid.